Menu
April 21, 2020  |  

Chlorella vulgaris genome assembly and annotation reveals the molecular basis for metabolic acclimation to high light conditions.

Chlorella vulgaris is a fast-growing fresh-water microalga cultivated at the industrial scale for applications ranging from food to biofuel production. To advance our understanding of its biology and to establish genetics tools for biotechnological manipulation, we sequenced the nuclear and organelle genomes of Chlorella vulgaris 211/11P by combining next generation sequencing and optical mapping of isolated DNA molecules. This hybrid approach allowed to assemble the nuclear genome in 14 pseudo-molecules with an N50 of 2.8 Mb and 98.9% of scaffolded genome. The integration of RNA-seq data obtained at two different irradiances of growth (high light-HL versus low light -LL) enabled to identify 10,724 nuclear genes, coding for 11,082 transcripts. Moreover 121 and 48 genes were respectively found in the chloroplast and mitochondrial genome. Functional annotation and expression analysis of nuclear, chloroplast and mitochondrial genome sequences revealed peculiar features of Chlorella vulgaris. Evidence of horizontal gene transfers from chloroplast to mitochondrial genome was observed. Furthermore, comparative transcriptomic analyses of LL vs HL provide insights into the molecular basis for metabolic rearrangement in HL vs. LL conditions leading to enhanced de novo fatty acid biosynthesis and triacylglycerol accumulation. The occurrence of a cytosolic fatty acid biosynthetic pathway can be predicted and its upregulation upon HL exposure is observed, consistent with increased lipid amount under HL. These data provide a rich genetic resource for future genome editing studies, and potential targets for biotechnological manipulation of Chlorella vulgaris or other microalgae species to improve biomass and lipid productivity.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Complete genome sequence of Paenisporosarcina antarctica CGMCC 1.6503 T, a marine psychrophilic bacterium isolated from Antarctica

A marine psychrophilic bacterium _Paenisporosarcina antarctica_ CGMCC 1.6503T (= JCM 14646T) was isolated off King George Island, Antarctica (62°13’31? S 58°57’08? W). In this study, we report the complete genome sequence of _Paenisporosarcina antarctica_, which is comprised of 3,972,524?bp with a mean G?+?C content of 37.0%. By gene function and metabolic pathway analyses, studies showed that strain CGMCC 1.6503T encodes a series of genes related to cold adaptation, including encoding fatty acid desaturases, dioxygenases, antifreeze proteins and cold shock proteins, and possesses several two-component regulatory systems, which could assist this strain in responding to the cold stress, the oxygen stress and the osmotic stress in Antarctica. The complete genome sequence of _P. antarctica_ may provide further insights into the genetic mechanism of cold adaptation for Antarctic marine bacteria.


April 21, 2020  |  

Complete genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from deep-sea sediment

Pseudoalteromonas strains are widely distributed in the marine environment and most have attracted considerable interest owing to their ability to synthesize biologically active metabolites. In this study, we report and describe the genome sequence of Pseudoalteromonas sp. MEBiC 03485, isolated from the deep-sea sediment of Pacific Ocean at a depth of 2000?m. The complete genome consisted of three contigs with a total genome size of 4,167,407?bp and a GC content of 40.76?l%, and was predicted to contain 4194 protein-coding genes and 131 non-coding RNA genes. The strain MEBiC 03485 genome was also shown to contain genes for diverse metabolic pathways. Genome analysis revealed that the genome of strain MEBiC 03485 was enriched with genes involved in signal transduction, mobile elements, and cold-adaptation, some of which might improve ecological fitness in the deep-sea environment. These findings improve our understanding of microbial adaptation strategies in deep-sea environments.


April 21, 2020  |  

Complete genome sequence and comparative analysis of Synechococcus sp. CS-601 (SynAce01), a cold-adapted cyanobacterium from an olligotrophic Antarctic habitat.

Marine picocyanobacteria belonging to Synechococcus are major contributors to the global carbon cycle, however the genomic information of its cold-adapted members has been lacking to date. To fill this void the genome of a cold-adapted planktonic cyanobacterium Synechococcus sp. CS-601 (SynAce01) has been sequenced. The genome of the strain contains a single chromosome of approximately 2.75 MBp and GC content of 63.92%. Gene prediction yielded 2984 protein coding sequences and 44 tRNA genes. The genome contained evidence of horizontal gene transfer events during its evolution. CS-601 appears as a transport generalist with some specific adaptation to an oligotrophic marine environment. It has a broad repertoire of transporters of both inorganic and organic nutrients to survive in inhospitable environments. The cold adaptation of the strain exhibited characteristics of a psychrotroph rather than psychrophile. Its salt adaptation strategy is likely to rely on the uptake and synthesis of osmolytes, like glycerol or glycine betaine. Overall, the genome reveals two distinct patterns of adaptation to the inhospitable environment of Antarctica. Adaptation to an oligotrophic marine environment is likely due to an abundance of genes, probably acquired horizontally, that are associated with increased transport of nutrients, osmolytes, and light harvesting. On the other hand, adaptations to low temperatures are likely due to prolonged evolutionary changes.


April 21, 2020  |  

Complete genome sequences of a H2O2-resistant psychrophilic bacterium Colwellia sp. Arc7-D isolated from Arctic Ocean sediment

Colwellia sp. Arc7-D, a psychrophilic H2O2-resisitant bacterium, was isolated from Arctic Ocean sediment. Here we describe the complete genome of Colwellia sp. Arc7-D. The genome has one circular chromosome of 4,305,442?bp (37.67?mol%?G?+?C content), consisting of 3526 coding genes, 77 tRNA genes, as well as five rRNA operons as 16S–23S-5S rRNA and one rRNA operon as 16S-23S-5S-5S. According to KEGG analysis, strain Arc7-D encodes 23 genes related with antioxidant activity including superoxide dismutase, glutathione peroxidase, glutathione reductase and catalase. However, many additional genes affiliated with anti-oxidative stress were also identified, such as aconitase, thioredoxin and ascorbic acid.


April 21, 2020  |  

Complete genome sequence of Pseudomonas frederiksbergensis ERDD5:01 revealed genetic bases for survivability at high altitude ecosystem and bioprospection potential.

Pseudomonas frederiksbergensis ERDD5:01 is a psychrotrophic bacteria isolated from the glacial stream flowing from East Rathong glacier in Sikkim Himalaya. The strain showed survivability at high altitude stress conditions like freezing, frequent freeze-thaw cycles, and UV-C radiations. The complete genome of 5,746,824?bp circular chromosome and a plasmid of 371,027?bp was sequenced to understand the genetic basis of its survival strategy. Multiple copies of cold-associated genes encoding cold active chaperons, general stress response, osmotic stress, oxidative stress, membrane/cell wall alteration, carbon storage/starvation and, DNA repair mechanisms supported its survivability at extreme cold and radiations corroborating with the bacterial physiological findings. The molecular cold adaptation analysis in comparison with the genome of 15 mesophilic Pseudomonas species revealed functional insight into the strategies of cold adaptation. The genomic data also revealed the presence of industrially important enzymes.Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

A siphonous macroalgal genome suggests convergent functions of homeobox genes in algae and land plants.

Genome evolution and development of unicellular, multinucleate macroalgae (siphonous algae) are poorly known, although various multicellular organisms have been studied extensively. To understand macroalgal developmental evolution, we assembled the ~26?Mb genome of a siphonous green alga, Caulerpa lentillifera, with high contiguity, containing 9,311 protein-coding genes. Molecular phylogeny using 107 nuclear genes indicates that the diversification of the class Ulvophyceae, including C. lentillifera, occurred before the split of the Chlorophyceae and Trebouxiophyceae. Compared with other green algae, the TALE superclass of homeobox genes, which expanded in land plants, shows a series of lineage-specific duplications in this siphonous macroalga. Plant hormone signalling components were also expanded in a lineage-specific manner. Expanded transport regulators, which show spatially different expression, suggest that the structural patterning strategy of a multinucleate cell depends on diversification of nuclear pore proteins. These results not only imply functional convergence of duplicated genes among green plants, but also provide insight into evolutionary roots of green plants. Based on the present results, we propose cellular and molecular mechanisms involved in the structural differentiation in the siphonous alga. © The Author(s) 2019. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.