fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Moraxella bovis strain Epp-63 (300), an etiologic agent of infectious bovine keratoconjunctivitis.

We report here the complete closed genome sequence of Moraxella bo- vis strain Epp-63 (300) (Epp63). This strain was isolated from an infectious bovine keratoconjunctivitis (IBK) case in 1963. Since then, Epp63 has been used extensively for IBK research. Consequently, the genome sequence of Epp63 should help eluci- date IBK host-pathogen interactions.

Read More »

Sunday, July 7, 2019

Closed genome sequences and antibiograms of 16 Pasteurella multocida isolates from bovine respiratory disease complex cases and apparently healthy controls.

Pasteurella multocida is an animal-associated Gram-negative member of the Pasteurellaceae family. It is an opportunistic pathogen and is one of the principal bacterial species contributing to bovine respiratory disease complex (BRDC) in feedlot cattle. We present 16 closed genome sequences and antibiograms of isolates cultured from calves exhibiting clinical signs of BRDC and from control calves not showing signs of BRDC.

Read More »

Sunday, July 7, 2019

Complete genome sequences of historic Clostridioides difficile food-dwelling ribotype 078 strains in Canada identical to that of the historic human clinical strain M120 in the United Kingdom.

Clostridioides (Clostridium) difficile is a spore-forming anaerobic bacte- rium that causes severe intestinal diseases in humans. Here, we report the complete genome sequence of the first C. difficile foodborne type strain (PCR ribotype 078) isolated from food animals in Canada in 2004, which has 100% similarity to the ge- nome sequence of the historic human clinical strain M120.

Read More »

Sunday, July 7, 2019

New variant of multidrug-resistant Salmonella enterica serovar Typhimurium associated with invasive disease in immunocompromised patients in Vietnam.

Nontyphoidal Salmonella (NTS), particularly Salmonella enterica serovar Typhimurium, is among the leading etiologic agents of bacterial enterocolitis globally and a well-characterized cause of invasive disease (iNTS) in sub-Saharan Africa. In contrast, S Typhimurium is poorly defined in Southeast Asia, a known hot spot for zoonotic disease with a recently described burden of iNTS disease. Here, we aimed to add insight into the epidemiology and potential impact of zoonotic transfer and antimicrobial resistance (AMR) in S Typhimurium associated with iNTS and enterocolitis in Vietnam. We performed whole-genome sequencing and phylogenetic reconstruction on 85 human (enterocolitis, carriage, and iNTS) and 113 animal S Typhimurium isolates…

Read More »

Sunday, July 7, 2019

Myxobacteria: Unraveling the potential of a unique microbiome niche

Natural products obtained from microorganisms have been playing an imperative role in drug discovery for decades. Hence, rightfully, microorganisms are considered as the richest source of biochemical remedies. In this review, we represent an unexplored family of bacteria considered to be prolific producers of diverse metabolites. Myxobacteria are gram-negative bacteria which have been reported to produce large families of secondary metabolites with prominent antimicrobial, antifungal, and antitumor activities. Klaus Gerth, Norbert Bedorf, Herbert Irschik, and Hans Reichenbach observed the antifungal activity of Sorangium cellulosum against Mucor hiemalis. In 2006, Hans Reichenbach and his team obtained a novel macrolide cruentaren A…

Read More »

Sunday, July 7, 2019

Emergence of gyrovirus 3 in commercial broiler chickens with transmissible viral proventriculitis.

Gyrovirus 3 (GyV3) has been identified in faeces from children with acute gastroenteritis. However, whether GyV3 is prevalent in poultry has not been determined to date. To the best of our knowledge, this study is the first to isolate GyV3 from commercial broiler chickens with transmissible viral proventriculitis (TVP) in China. The complete genome of the virus shares 98.4% sequence identity with the FecGy strain that causes acute gastroenteritis in children. Epidemiological investigation from 2013 to 2017 revealed that the infection rate of GyV3 reached 12.5% (42/336) in commercial broiler chickens with TVP, indicating that the infection of GyV3 was…

Read More »

Sunday, July 7, 2019

Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739.

The rise of antibiotic resistance in pathogenic bacteria is endangering the efficacy of antibiotics, which consequently results in greater use of silver as a biocide. Chromosomal mapping of the Cus system or plasmid encoded Sil system and their relationship with silver resistance was studied for several gram-negative bacteria. However, only few reports investigated silver detoxification mediated by the Sil system integrated in Escherichia coli chromosome. Accordingly, this work aimed to study the Sil system in E. coli ATCC 8739 and to produce evidence for its role in silver resistance development. Silver resistance was induced in E. coli ATCC 8739 by…

Read More »

Sunday, July 7, 2019

Draft genome sequence of the xanthocidin-producing strain Streptomyces sp. AcE210, isolated from a root nodule of Alnus glutinosa (L.).

Streptomyces sp. strain AcE210 exhibited antibacterial activity toward Gram-positive microorganisms and turned out to be a rare producer of the special- ized metabolite xanthocidin. The 10.6-Mb draft genome sequence gives insight into the complete specialized metabolite production capacity and builds the basis to find and locate the biosynthetic gene cluster of xanthocidin.

Read More »

Sunday, July 7, 2019

Genome analysis of Rhodococcus Sp. DSSKP-R-001: A highly effective ß-estradiol-degrading bacterium.

We screened bacteria that use E2 as its sole source of carbon and energy for growth and identified them as Rhodococcus, and we named them DSSKP-R-001. For a better understanding of the metabolic potential of the strain, whole genome sequencing of Rhodococcus DSSKP-R-001 and annotation of the functional genes were performed. The genomic sketches included a predicted protein-coding gene of approximately 5.4?Mbp with G?+?C content of 68.72% and 5180. The genome of Rhodococcus strain DSSKP-R-001 consists of three replicons: one chromosome and two plasmids of 5.2, 0.09, and 0.09, respectively. The results showed that there were ten steroid-degrading enzymes distributed…

Read More »

Sunday, July 7, 2019

Genetic structure of four plasmids found in Acinetobacter baumannii isolate D36 belonging to lineage 2 of global clone 1.

Four plasmids ranging in size from 4.7 to 44.7 kb found in the extensively antibiotic resistant Acinetobacter baumannii isolate D36 that belongs to lineage 2 of global clone 1 were examined. D36 includes two cryptic plasmids and two carrying antibiotic resistance genes. The smallest plasmid pD36-1 (4.7 kb) carries no resistance genes but includes mobA and mobC mobilisation genes related to those found in pRAY* (pD36-2, 6,078 bp) that also carries the aadB gentamicin, kanamycin and tobramycin resistance gene cassette. These two plasmids do not encode a Rep protein. Plasmid pRAY* was found to be mobilised at high frequency by…

Read More »

Sunday, July 7, 2019

Genome analysis of Mycobacterium avium subspecies hominissuis strain 109.

Infection with Mycobacterium avium is a significant cause of morbidity and its treatment requires the use of multiple antibiotics for more than 12 months. In the current work, we provide the genome sequence, gene annotations, gene ontology annotations, and protein homology data for M. avium strain 109 (MAC109), which has been used extensively in preclinical studies. The de novo assembled genome consists of a circular chromosome of length 5,188,883?bp and two circular plasmids of sizes 147,100?bp and 16,516?bp. We have named the plasmids pMAC109a and pMAC109b, respectively. Based on its genome, we confirm that MAC109 should be classified as Mycobacterium…

Read More »

Sunday, July 7, 2019

Whole-genome sequencing of an NDM-1- and OXA-58-producing Acinetobacter towneri isolate from hospital sewage in Sichuan Province, China.

Acinetobacter spp. isolates carrying the blaNDM-1 gene are frequently reported. However, most reported blaNDM-1 genes are carried by clinical strains. Here we report a carbapenem-resistant Acinetobacter towneri isolate from hospital sewage in China co-harbouring blaNDM-1 and blaOXA-58 in the genome.Whole-genome sequencing was performed using a single molecule, real-time (SMRT) sequencing platform with a Pacific Biosciences RS II Sequencer and MiSeq system. Reads were de novo assembled using Celera Assembler v.8.0. Genome annotation was performed using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP), and the genome sequence was analysed by bioinformatics methods.The 2963729-bp genome with a G+C content of 41.30% displayed…

Read More »

1 142 143 144 145

Subscribe for blog updates:

Archives