fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Complete genome sequence of Kocuria rhizophila BT304, isolated from the small intestine of castrated beef cattle.

Members of the species Kocuria rhizophila, belonging to the family Micrococcaceae in the phylum Actinobacteria, have been isolated from a wide variety of natural sources, such as soil, freshwater, fish gut, and clinical specimens. K. rhizophila is important from an industrial viewpoint, because the bacterium grows rapidly with high cell density and exhibits robustness at various growth conditions. However, the bacterium is an opportunistic pathogen involved in human infections. Here, we sequenced and analyzed the genome of the K. rhizophila strain BT304, isolated from the small intestine of adult castrated beef cattle.The genome of K. rhizophila BT304 consisted of a…

Read More »

Sunday, July 7, 2019

BMScan: using whole genome similarity to rapidly and accurately identify bacterial meningitis causing species.

Bacterial meningitis is a life-threatening infection that remains a public health concern. Bacterial meningitis is commonly caused by the following species: Neisseria meningitidis, Streptococcus pneumoniae, Listeria monocytogenes, Haemophilus influenzae and Escherichia coli. Here, we describe BMScan (Bacterial Meningitis Scan), a whole-genome analysis tool for the species identification of bacterial meningitis-causing and closely-related pathogens, an essential step for case management and disease surveillance. BMScan relies on a reference collection that contains genomes for 17 focal species to scan against to identify a given species. We established this reference collection by supplementing publically available genomes from RefSeq with genomes from the isolate…

Read More »

Sunday, July 7, 2019

Comparative genomic analysis of Staphylococcus lugdunensis shows a closed pan-genome and multiple barriers to horizontal gene transfer.

Coagulase negative staphylococci (CoNS) are commensal bacteria on human skin. Staphylococcus lugdunensis is a unique CoNS which produces various virulence factors and may, like S. aureus, cause severe infections, particularly in hospital settings. Unlike other staphylococci, it remains highly susceptible to antimicrobials, and genome-based phylogenetic studies have evidenced a highly conserved genome that distinguishes it from all other staphylococci.We demonstrate that S. lugdunensis possesses a closed pan-genome with a very limited number of new genes, in contrast to other staphylococci that have an open pan-genome. Whole-genome nucleotide and amino acid identity levels are also higher than in other staphylococci. We…

Read More »

Sunday, July 7, 2019

STRetch: detecting and discovering pathogenic short tandem repeat expansions.

Short tandem repeat (STR) expansions have been identified as the causal DNA mutation in dozens of Mendelian diseases. Most existing tools for detecting STR variation with short reads do so within the read length and so are unable to detect the majority of pathogenic expansions. Here we present STRetch, a new genome-wide method to scan for STR expansions at all loci across the human genome. We demonstrate the use of STRetch for detecting STR expansions using short-read whole-genome sequencing data at known pathogenic loci as well as novel STR loci. STRetch is open source software, available from github.com/Oshlack/STRetch .

Read More »

Sunday, July 7, 2019

MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies.

Large-scale bacterial population genetics studies are now routine due to cost-effective Illumina short-read sequencing. However, analysing plasmid content remains difficult due to incomplete assembly of plasmids. Bacterial isolates can contain any number of plasmids and assembly remains complicated due to the presence of repetitive elements. Numerous tools have been developed to analyse plasmids but the performance and functionality of the tools are variable. The MOB-suite was developed as a set of modular tools for reconstruction and typing of plasmids from draft assembly data to facilitate characterization of plasmids. Using a set of closed genomes with publicly available Illumina data, the…

Read More »

Sunday, July 7, 2019

Complete genome of Micromonospora sp. strain B006 reveals biosynthetic potential of a Lake Michigan Actinomycete.

Actinomycete bacteria isolated from freshwater environments are an unexplored source of natural products. Here we report the complete genome of the Great Lakes-derived Micromonospora sp. strain B006, revealing its potential for natural product biosynthesis. The 7-megabase pair chromosome of strain B006 was sequenced using Illumina and Oxford Nanopore technologies followed by Sanger sequencing to close remaining gaps. All identified biosynthetic gene clusters (BGCs) were manually curated. Five known BGCs were identified encoding desferrioxamine, alkyl- O-dihydrogeranylmethoxyhydroquinone, a spore pigment, sioxanthin, and diazepinomicin, which is currently in phase II clinical trials to treat Phelan-McDermid syndrome and co-morbid epilepsy. We report here that…

Read More »

Sunday, July 7, 2019

Complete and assembled genome sequence of an NDM-5- and CTX-M-15-producing Escherichia coli sequence type 617 isolated from wastewater in Switzerland.

Carbapenem-resistant Escherichia coli have emerged worldwide and represent a major challenge to effective healthcare management. Here we report the genome sequence of an NDM-5- and CTX-M-15-producing E. coli belonging to sequence type 617 isolated from wastewater treatment plant effluent in Switzerland.Whole-genome sequencing of E. coli 657SK2 was performed using Pacific Biosciences (PacBio) single-molecule real-time (SMRT) technology RS2 reads (C4/P6 chemistry). De novo assembly was carried out using Canu 1.6, and sequences were annotated using the NCBI Prokaryotic Genome Annotation Pipeline (PGAP).The genome of E. coli 657SK2 consists of a 4.9-Mbp chromosome containing blaCTX-M-15, genes associated with virulence [fyuA, hlyE, the…

Read More »

Sunday, July 7, 2019

Pathogenesis of Helicobacter pylori infection

In this review, we highlight progress in the last year in characterizing known virulence factors like flagella and the Cag type IV secretion system with sophisticated struc- tural and biochemical approaches to yield new insight on the assembly and functions of these critical virulence determinants. Several aspects of Helicobacter pylori physi- ology were newly explored this year and evaluated for their functions during stom- ach colonization, including a fascinating role for the essential protease HtrA in allowing access of H. pylori to the basolateral side of the gastric epithelium through cleavage of the tight junction protein E- cadherin to facilitate…

Read More »

Sunday, July 7, 2019

Evolutionary emergence of drug resistance in Candida opportunistic pathogens.

Fungal infections, such as candidiasis caused by Candida, pose a problem of growing medical concern. In developed countries, the incidence of Candida infections is increasing due to the higher survival of susceptible populations, such as immunocompromised patients or the elderly. Existing treatment options are limited to few antifungal drug families with efficacies that vary depending on the infecting species. In this context, the emergence and spread of resistant Candida isolates are being increasingly reported. Understanding how resistance can evolve within naturally susceptible species is key to developing novel, more effective treatment strategies. However, in contrast to the situation of antibiotic…

Read More »

Sunday, July 7, 2019

Approximate, simultaneous comparison of microbial genome architectures via syntenic anchoring of quiver representations

Motivation A long-standing limitation in comparative genomic studies is the dependency on a reference genome, which hinders the spectrum of genetic diversity that can be identified across a population of organisms. This is especially true in the microbial world where genome architectures can significantly vary. There is therefore a need for computational methods that can simultaneously analyze the architectures of multiple genomes without introducing bias from a reference. Results In this article, we present Ptolemy: a novel method for studying the diversity of genome architectures—such as structural variation and pan-genomes—across a collection of microbial assemblies without the need of a…

Read More »

Sunday, July 7, 2019

DNA sequences and predicted protein structures of prot6E and sefA genes for Salmonella ser. Enteritidis detection

Genes prot6E and sefA are used as targets for detection of Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella ser. Enteritidis). We investigated variations in these genes across 64 different Salmonella ser. Enteritidis strains isolated from egg and chicken samples, then used Whole Genome Sequence (WGS) data to model the structures of their protein products. Isolates were sequenced using Illumina technologies. Based on the resulting phylogenetic tree, our isolates clustered in 2 distinct clades. All isolates carried prot6E and sefA. Comparative genomic analyses indicated two non-synonymous mutations (Glycine ? Serine and Valine ? Isoleucine) of prot6E in 11 isolates (9 egg…

Read More »

Sunday, July 7, 2019

Complete genome sequence of an efficient vitamin D3-hydroxylating bacterium, Pseudonocardia autotrophica NBRC 12743.

Pseudonocardia autotrophica NBRC 12743 contains a cytochrome P450 vitamin D3hydroxylase, and it is used as a biocatalyst for the commercial produc- tion of hydroxyvitamin D3, a valuable compound for medication. Here, we report the complete genome sequence of P. autotrophica NBRC 12743, which could be useful for improving the productivity of hydroxyvitamin D3.

Read More »

Sunday, July 7, 2019

Complete genome sequence of the Arcobacter bivalviorum type strain LMG 26154.

Arcobacters are routinely recovered from marine environments, and multiple Arcobacter species have been isolated from shellfish. Arcobacter bivalviorum was recovered from mussels collected in the Ebro Delta in northeastern Spain. This report describes the complete whole-genome sequence of the A. bivalviorum type strain LMG 26154 (= F4T = CECT 7835T).

Read More »

Sunday, July 7, 2019

Complete genome sequence of the multidrug-resistant neonatal meningitis Escherichia coli serotype O75:H5:K1 strain mcjchv-1 (NMEC-O75).

Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.

Read More »

1 141 142 143 144 145

Subscribe for blog updates:

Archives