Menu
July 7, 2019  |  

Emerging mechanisms of antimicrobial resistance in bacteria and fungi: advances in the era of genomics.

Bacteria and fungi continue to develop new ways to adapt and survive the lethal or biostatic effects of antimicrobials through myriad mechanisms. Novel antibiotic resistance genes such as lsa(C), erm(44), VCC-1, mcr-1, mcr-2, mcr-3, mcr-4, bla KLUC-3 and bla KLUC-4 were discovered through comparative genomics and further functional studies. As well, mutations in genes that hitherto were unknown to confer resistance to antimicrobials, such as trm, PP2C, rpsJ, HSC82, FKS2 and Rv2887, were shown by genomics and transcomplementation assays to mediate antimicrobial resistance in Acinetobacter baumannii, Staphylococcus aureus, Enterococcus faecium, Saccharomyces cerevisae, Candida glabrata and Mycobacterium tuberculosis, respectively. Thus, genomics, transcriptomics and metagenomics, coupled with functional studies are the future of antimicrobial resistance research and novel drug discovery or design.


July 7, 2019  |  

Complete genome sequence of Mycobacterium shigaense.

Mycobacterium shigaense is a slowly growing scotochromogenic species and a member of the Mycobacterium simiae complex group. Here, we report the complete sequence of its genome, comprising a 5.2-Mb chromosome. The sequence will represent the essential data for future phylogenetic and comparative genome studies of the Mycobacterium simiae complex group. Copyright © 2018 Yoshida et al.


July 7, 2019  |  

Complete genome sequence of Pseudomonas aeruginosa K34-7, a carbapenem-resistant isolate of the high-risk sequence type 233.

Carbapenem-resistant Pseudomonas aeruginosa is defined as a textquotedblleftcriticaltextquotedblright priority pathogen for the development of new antibiotics. Here we report the complete genome sequence of an extensively drug-resistant, Verona integron-encoded metallo-ß-lactamase-expressing isolate belonging to the high-risk sequence type 233.


July 7, 2019  |  

Low-level antimicrobials in the medicinal leech select for resistant pathogens that spread to patients.

Fluoroquinolones (FQs) and ciprofloxacin (Cp) are important antimicrobials that pollute the environment in trace amounts. Although Cp has been recommended as prophylaxis for patients undergoing leech therapy to prevent infections by the leech gut symbiont Aeromonas, a puzzling rise in Cp-resistant (Cpr) Aeromonas infections has been reported. We report on the effects of subtherapeutic FQ concentrations on bacteria in an environmental reservoir, the medicinal leech, and describe the presence of multiple antibiotic resistance mutations and a gain-of-function resistance gene. We link the rise of CprAeromonas isolates to exposure of the leech microbiota to very low levels of Cp (0.01 to 0.04 µg/ml), <1/100 of the clinical resistance breakpoint for Aeromonas Using competition experiments and comparative genomics of 37 strains, we determined the mechanisms of resistance in clinical and leech-derived Aeromonas isolates, traced their origin, and determined that the presence of merely 0.01 µg/ml Cp provides a strong competitive advantage for Cpr strains. Deep-sequencing the Cpr-conferring region of gyrA enabled tracing of the mutation-harboring Aeromonas population in archived gut samples, and an increase in the frequency of the Cpr-conferring mutation in 2011 coincides with the initial reports of CprAeromonas infections in patients receiving leech therapy.IMPORTANCE The role of subtherapeutic antimicrobial contamination in selecting for resistant strains has received increasing attention and is an important clinical matter. This study describes the relationship of resistant bacteria from the medicinal leech, Hirudo verbana, with patient infections following leech therapy. While our results highlight the need for alternative antibiotic therapies, the rise of Cpr bacteria demonstrates the importance of restricting the exposure of animals to antibiotics approved for veterinary use. The shift to a more resistant community and the dispersion of Cpr-conferring mechanisms via mobile elements occurred in a natural setting due to the presence of very low levels of fluoroquinolones, revealing the challenges of controlling the spread of antibiotic-resistant bacteria and highlighting the importance of a holistic approach in the management of antibiotic use. Copyright © 2018 Beka et al.


July 7, 2019  |  

Interpreting whole-genome sequence analyses of foodborne bacteria for regulatory applications and outbreak investigations.

Whole-genome sequence (WGS) analysis has revolutionized the food safety industry by enabling high-resolution typing of foodborne bacteria. Higher resolving power allows investigators to identify origins of contamination during illness outbreaks and regulatory activities quickly and accurately. Government agencies and industry stakeholders worldwide are now analyzing WGS data routinely. Although researchers have published many studies that assess the efficacy of WGS data analysis for source attribution, guidance for interpreting WGS analyses is lacking. Here, we provide the framework for interpreting WGS analyses used by the Food and Drug Administration’s Center for Food Safety and Applied Nutrition (CFSAN). We based this framework on the experiences of CFSAN investigators, collaborations and interactions with government and industry partners, and evaluation of the published literature. A fundamental question for investigators is whether two or more bacteria arose from the same source of contamination. Analysts often count the numbers of nucleotide differences [single-nucleotide polymorphisms (SNPs)] between two or more genome sequences to measure genetic distances. However, using SNP thresholds alone to assess whether bacteria originated from the same source can be misleading. Bacteria that are isolated from food, environmental, or clinical samples are representatives of bacterial populations. These populations are subject to evolutionary forces that can change genome sequences. Therefore, interpreting WGS analyses of foodborne bacteria requires a more sophisticated approach. Here, we present a framework for interpreting WGS analyses that combines SNP counts with phylogenetic tree topologies and bootstrap support. We also clarify the roles of WGS, epidemiological, traceback, and other evidence in forming the conclusions of investigations. Finally, we present examples that illustrate the application of this framework to real-world situations.


July 7, 2019  |  

Evolutionary emergence of drug resistance in Candida opportunistic pathogens.

Fungal infections, such as candidiasis caused by Candida, pose a problem of growing medical concern. In developed countries, the incidence of Candida infections is increasing due to the higher survival of susceptible populations, such as immunocompromised patients or the elderly. Existing treatment options are limited to few antifungal drug families with efficacies that vary depending on the infecting species. In this context, the emergence and spread of resistant Candida isolates are being increasingly reported. Understanding how resistance can evolve within naturally susceptible species is key to developing novel, more effective treatment strategies. However, in contrast to the situation of antibiotic resistance in bacteria, few studies have focused on the evolutionary mechanisms leading to drug resistance in fungal species. In this review, we will survey and discuss current knowledge on the genetic bases of resistance to antifungal drugs in Candida opportunistic pathogens. We will do so from an evolutionary genomics perspective, focusing on the possible evolutionary paths that may lead to the emergence and selection of the resistant phenotype. Finally, we will discuss the potential of future studies enabled by current developments in sequencing technologies, in vitro evolution approaches, and the analysis of serial clinical isolates.


July 7, 2019  |  

Complete genome sequence of the multidrug-resistant neonatal meningitis Escherichia coli serotype O75:H5:K1 strain mcjchv-1 (NMEC-O75).

Neonatal meningitis Escherichia coli (NMEC) is the second leading cause of neonatal bacterial meningitis worldwide. We report the genome sequence of the multidrug-resistant NMEC serotype O75:H5:K1 strain mcjchv-1, which resulted in an infant’s death. The O75 serogroup is rare among NMEC isolates; therefore, this strain is considered an emergent pathogen.


July 7, 2019  |  

The ß-lactamase gene profile and a plasmid-carrying multiple heavy metal resistance genes of Enterobacter cloacae.

In this work, by high-throughput sequencing, antibiotic resistance genes, including class A (blaCTX-M, blaZ, blaTEM, blaVEB, blaKLUC, and blaSFO), class C (blaSHV, blaDHA, blaMIR, blaAZECL-29, and blaACT), and class D (blaOXA) ß-lactamase genes, were identified among the pooled genomic DNA from 212 clinical Enterobacter cloacae isolates. Six blaMIR-positive E. cloacae strains were identified, and pulsed-field gel electrophoresis (PFGE) showed that these strains were not clonally related. The complete genome of the blaMIR-positive strain (Y546) consisted of both a chromosome (4.78?Mb) and a large plasmid pY546 (208.74?kb). The extended-spectrum ß-lactamases (ESBLs) (blaSHV-12 and blaCTX-M-9a) and AmpC (blaMIR) were encoded on the chromosome, and the pY546 plasmid contained several clusters of genes conferring resistance to metals, such as copper (pco), arsenic (ars), tellurite (ter), and tetrathionate (ttr), and genes encoding many divalent cation transporter proteins. The comparative genomic analyses of the whole plasmid sequence and of the heavy metal resistance gene-encoding regions revealed that the plasmid sequences of Klebsiella pneumoniae (such as pKPN-332, pKPN-3967, and pKPN-262) shared the highest similarity with those of pY546. It may be concluded that a variety of ß-lactamase genes present in E. cloacae which confer resistance to ß-lactam antibiotics and the emergence of plasmids carrying heavy metal resistance genes in clinical isolates are alarming and need further surveillance.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.