Menu
July 7, 2019  |  

Complete genome of Vibrio parahaemolyticus FORC014 isolated from the toothfish.

Foodborne illness can occur due to various pathogenic bacteria such as Staphylococcus aureus, Escherichia coli and Vibrio parahaemolyticus, and can cause severe gastroenteritis symptoms. In this study, we completed the genome sequence of a foodborne pathogen V. parahaemolyticus FORC_014, which was isolated from suspected contaminated toothfish from South Korea. Additionally, we extended our knowledge of genomic characteristics of the FORC_014 strain through comparative analysis using the complete sequences of other V. parahaemolyticus strains whose complete genomes have previously been reported.The complete genome sequence of V. parahaemolyticus FORC_014 was generated using the PacBio RS platform with single molecule, real-time (SMRT) sequencing. The FORC_014 strain consists of two circular chromosomes (3,241,330 bp for chromosome 1 and 1,997,247 bp for chromosome 2), one plasmid (51,383 bp), and one putative phage sequence (96,896 bp). The genome contains a total of 4274 putative protein coding sequences, 126 tRNA genes and 34 rRNA genes. Furthermore, we found 33 type III secretion system 1 (T3SS1) related proteins and 15 type III secretion system 2 (T3SS2) related proteins on chromosome 1. This is the first reported result of Type III secretion system 2 located on chromosome 1 of V. parahaemolyticus without thermostable direct hemolysin (tdh) and thermostable direct hemolysin-related hemolysin (trh).Through investigation of the complete genome sequence of V. parahaemolyticus FORC_014, which differs from previously reported strains, we revealed two type III secretion systems (T3SS1, T3SS2) located on chromosome 1 which do not include tdh and trh genes. We also identified several virulence factors carried by our strain, including iron uptake system, hemolysin and secretion system. This result suggests that the FORC_014 strain may be one pathogen responsible for foodborne illness outbreak. Our results provide significant genomic clues which will assist in future understanding of virulence at the genomic level and help distinguish between clinical and non-clinical isolates.


July 7, 2019  |  

Active and adaptive Legionella CRISPR-Cas reveals a recurrent challenge to the pathogen.

Clustered regularly interspaced short palindromic repeats with CRISPR-associated gene (CRISPR-Cas) systems are widely recognized as critical genome defense systems that protect microbes from external threats such as bacteriophage infection. Several isolates of the intracellular pathogen Legionella pneumophila possess multiple CRISPR-Cas systems (type I-C, type I-F and type II-B), yet the targets of these systems remain unknown. With the recent observation that at least one of these systems (II-B) plays a non-canonical role in supporting intracellular replication, the possibility remained that these systems are vestigial genome defense systems co-opted for other purposes. Our data indicate that this is not the case. Using an established plasmid transformation assay, we demonstrate that type I-C, I-F and II-B CRISPR-Cas provide protection against spacer targets. We observe efficient laboratory acquisition of new spacers under ‘priming’ conditions, in which initially incomplete target elimination leads to the generation of new spacers and ultimate loss of the invasive DNA. Critically, we identify the first known target of L. pneumophila CRISPR-Cas: a 30?kb episome of unknown function whose interbacterial transfer is guarded against by CRISPR-Cas. We provide evidence that the element can subvert CRISPR-Cas by mutating its targeted sequences – but that primed spacer acquisition may limit this mechanism of escape. Rather than generally impinging on bacterial fitness, this element drives a host specialization event – with improved fitness in Acanthamoeba but a reduced ability to replicate in other hosts and conditions. These observations add to a growing body of evidence that host range restriction can serve as an existential threat to L. pneumophila in the wild.© 2016 The Authors Cellular Microbiology Published by John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequences of six Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway.

Here, we report the complete genome sequences of Legionella pneumophila isolates from two collocated outbreaks of Legionnaires’ disease in 2005 and 2008 in Sarpsborg/Fredrikstad, Norway. One clinical and two environmental isolates were sequenced from each outbreak. The genome of all six isolates consisted of a 3.36 Mb-chromosome, while the 2005 genomes featured an additional 68 kb-episome sharing high sequence similarity with the L. pneumophila Lens plasmid. All six genomes contained multiple mobile genetic elements including novel combinations of type-IVA secretion systems. A comparative genomics study will be launched to resolve the genetic relationship between the L. pneumophila isolates. Copyright © 2016 Dybwad et al.


July 7, 2019  |  

Listeria monocytogenes in stone fruits linked to a multistate outbreak: enumeration of cells and whole-genome sequencing.

In 2014, the identification of stone fruits contaminated with Listeria monocytogenes led to the subsequent identification of a multistate outbreak. Simultaneous detection and enumeration of L. monocytogenes were performed on 105 fruits, each weighing 127 to 145 g, collected from 7 contaminated lots. The results showed that 53.3% of the fruits yielded L. monocytogenes (lower limit of detection, 5 CFU/fruit), and the levels ranged from 5 to 2,850 CFU/fruit, with a geometric mean of 11.3 CFU/fruit (0.1 CFU/g of fruit). Two serotypes, IVb-v1 and 1/2b, were identified by a combination of PCR- and antiserum-based serotyping among isolates from fruits and their packing environment; certain fruits contained a mixture of both serotypes. Single nucleotide polymorphism (SNP)-based whole-genome sequencing (WGS) analysis clustered isolates from two case-patients with the serotype IVb-v1 isolates and distinguished outbreak-associated isolates from pulsed-field gel electrophoresis (PFGE)-matched, but epidemiologically unrelated, clinical isolates. The outbreak-associated isolates differed by up to 42 SNPs. All but one serotype 1/2b isolate formed another WGS cluster and differed by up to 17 SNPs. Fully closed genomes of isolates from the stone fruits were used as references to maximize the resolution and to increase our confidence in prophage analysis. Putative prophages were conserved among isolates of each WGS cluster. All serotype IVb-v1 isolates belonged to singleton sequence type 382 (ST382); all but one serotype 1/2b isolate belonged to clonal complex 5.WGS proved to be an excellent tool to assist in the epidemiologic investigation of listeriosis outbreaks. The comparison at the genome level contributed to our understanding of the genetic diversity and variations among isolates involved in an outbreak or isolates associated with food and environmental samples from one facility. Fully closed genomes increased our confidence in the identification and comparison of accessory genomes. The diversity among the outbreak-associated isolates and the inclusion of PFGE-matched, but epidemiologically unrelated, isolates demonstrate the high resolution of WGS. The prevalence and enumeration data could contribute to our further understanding of the risk associated with Listeria monocytogenes contamination, especially among high-risk populations. Copyright © 2016 Chen et al.


July 7, 2019  |  

Use of single molecule sequencing for comparative genomics of an environmental and a clinical isolate of Clostridium difficile ribotype 078.

How the pathogen Clostridium difficile might survive, evolve and be transferred between reservoirs within the natural environment is poorly understood. Some ribotypes are found both in clinical and environmental settings. Whether these strains are distinct from each another and evolve in the specific environments is not established. The possession of a highly mobile genome has contributed to the genetic diversity and ongoing evolution of C. difficile. Interpretations of genetic diversity have been limited by fragmented assemblies resulting from short-read length sequencing approaches and by a limited understanding of epigenetic regulation of diversity. To address this, single molecule real time (SMRT) sequencing was used in this study as it produces high quality genome sequences, with resolution of repeat regions (including those found in mobile elements) and can generate data to determine methylation modifications across the sequence (the methylome).Chromosomal rearrangements and ribosomal operon duplications were observed in both genomes. The rearrangements occurred at insertion sites within two mobile genetic elements (MGEs), Tn6164 and Tn6293, present only in the M120 and CD105HS27 genomes, respectively. The gene content of these two transposons differ considerably which could impact upon horizontal gene transfer; differences include CDSs encoding methylases and a conjugative prophage only in Tn6164. To investigate mechanisms which could affect MGE transfer, the methylome, restriction modification (RM)  and the CRISPR/Cas systems were characterised for each strain. Notably, the environmental isolate, CD105HS27, does not share a consensus motif for (m4)C methylation, but has one additional spacer  when compared to the clinical isolate M120.These findings show key differences between the two strains in terms of their genetic capacity for MGE transfer. The carriage of horizontally transferred genes appear to have genome wide effects based on two different methylation patterns. The CRISPR/Cas system appears active although perhaps slow to evolve. Data suggests that both mechanisms are functional and impact upon horizontal gene transfer and genome evolution within C. difficile.


July 7, 2019  |  

Genome sequence and comparative pathogenic determinants of multidrug resistant uropathogenic Escherichia coli O25b: H4, A clinical isolate from Saudi Arabia

Escherichia coli serotype O25b:H4 is involved in human urinary tract infections.In this study, we sequenced and analyzed E. coli O25b:H4 isolated from a patient sufferingfrom recurring UTI infections in an intensive care unit at Hera General Hospital inMakkah, Saudi Arabia. We aimed to determine the virulence genes for pathogenesis anddrug resistance of this isolate compared to other E. coli strains. We sequenced and analyzedthe E. coli O25b:H4 Saudi strain clinical isolate using next generation sequencing. Usingthe ERGO genome analysis platform, we performed annotations and identified virulenceand antibiotic resistance determinants of this clinical isolate. The E. coli O25b:H4 genomewas assembled into four contigs representing a total chromosome size of 5.28 Mb, andthree contigs were identified, including a 130.9 kb (virulence plasmid) contig bearing thebla-CTX gene and 32 kb and 29 kb contigs. In comparing this genome to otheruropathogenic E. coli genomes, we identified unique drug resistance and pathogenicityfactors. In this work, whole-genome sequencing and targeted comparative analysis of aclinical isolate of uropathogenic Escherichia coli O25b:H4 was performed. This strainencodes virulence genes linked with extraintestinal pathogenic E. coli (ExPEC) that areexpressed constitutively in E. coli ST131. We identified the genes responsible forpathogenesis and drug resistance and performed comparative analyses of the virulenceand antibiotic resistance determinants with those of other E. coli UPEC isolates. This isthe first report of genome sequencing and analysis of a UPEC strain from Saudi Arabia.


July 7, 2019  |  

Clonal dissemination of Pseudomonas aeruginosa sequence type 235 isolates carrying blaIMP-6 and emergence of blaGES-24 and blaIMP-10 on novel genomic islands PAGI-15 and -16 in South Korea.

A total of 431 Pseudomonas aeruginosa clinical isolates were collected from 29 general hospitals in South Korea in 2015. Antimicrobial susceptibility was tested by the disk diffusion method, and MICs of carbapenems were determined by the agar dilution method. Carbapenemase genes were amplified by PCR and sequenced, and the structures of class 1 integrons surrounding the carbapenemase gene cassettes were analyzed by PCR mapping. Multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE) were performed for strain typing. Whole-genome sequencing was carried out to analyze P. aeruginosa genomic islands (PAGIs) carrying the blaIMP-6, blaIMP-10, and blaGES-24 genes. The rates of carbapenem-nonsusceptible and carbapenemase-producing P. aeruginosa isolates were 34.3% (148/431) and 9.5% (41/431), respectively. IMP-6 was the most prevalent carbapenemase type, followed by VIM-2, IMP-10, and GES-24. All carbapenemase genes were located on class 1 integrons of 6 different types on the chromosome. All isolates harboring carbapenemase genes exhibited genetic relatedness by PFGE (similarity > 80%); moreover, all isolates were identified as sequence type 235 (ST235), with the exception of two ST244 isolates by MLST. The blaIMP-6, blaIMP-10, and blaGES-24 genes were found to be located on two novel PAGIs, designated PAGI-15 and PAGI-16. Our data support the clonal spread of an IMP-6-producing P. aeruginosa ST235 strain, and the emergence of IMP-10 and GES-24 demonstrates the diversification of carbapenemases in P. aeruginosa in Korea. Copyright © 2016, American Society for Microbiology. All Rights Reserved.


July 7, 2019  |  

De novo mutations resolve disease transmission pathways in clonal malaria

Detecting de novo mutations in viral and bacterial pathogens enables researchers to reconstruct detailed networks of disease transmission and is a key technique in genomic epidemiology. However, these techniques have not yet been applied to the malaria parasite, Plasmodium falciparum, in which a larger genome, slower generation times, and a complex life cycle make them difficult to implement. Here, we demonstrate the viability of de novo mutation studies in P. falciparum for the first time. Using a combination of sequencing, library preparation, and genotyping methods that have been optimized for accuracy in low-complexity genomic regions, we have detected de novo mutations that distinguish nominally identical parasites from clonal lineages. Despite its slower evolutionary rate compared with bacterial or viral species, de novo mutation can be detected in P. falciparum across timescales of just 1-2?years and evolutionary rates in low-complexity regions of the genome can be up to twice that detected in the rest of the genome. The increased mutation rate allows the identification of separate clade expansions that cannot be found using previous genomic epidemiology approaches and could be a crucial tool for mapping residual transmission patterns in disease elimination campaigns and reintroduction scenarios.


July 7, 2019  |  

Complete genomic analysis of multidrug-resistance Pseudomonas aeruginosa Guangzhou-Pae617, the host of megaplasmid pBM413.

We previously described the novel qnrVC6 and blaIMP-45carrying megaplasmid pBM413. This study aimed to investigate the complete genome of multidrug-resistance P. aeruginosa Guangzhou-Pae617, a clinical isolate from the sputum of a patient who was suffering from respiratory disease in Guangzhou, China.The genome was sequenced using Illumina Hiseq 2500 and PacBio RS II sequencers and assembled de novo using HGAP. The genome was automatically and manually annotated.The genome of P. aeruginosa Guangzhou-Pae617 is 6,430,493 bp containing 5881 predicted genes with an average G + C content of 66.43%. The genome showed high similarity to two new sequenced P. aeruginosa strains isolated from New York, USA. From the whole genome sequence, we identified a type IV pilin, two large prophages, 15 antibiotic resistant genes, 5 genes involved in the “Infectious diseases” pathways, and 335 virulence factors.The antibiotic resistance and virulence factors in the genome of P. aeruginosa strain Guangzhou-Pae617 were identified by complete genomic analysis. It contributes to further study on antibiotic resistance mechanism and clinical control of P. aeruginosa. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 7, 2019  |  

High-quality complete genome sequences of three bovine Shiga toxin-producing Escherichia coli O177:H- (fliCH25) isolates harboring virulent stx2 and multiple plasmids.

Shiga toxin-producingEscherichia coli(STEC) bacteria are zoonotic pathogens. We report here the high-quality complete genome sequences of three STEC O177:H- (fliCH25) strains, SMN152SH1, SMN013SH2, and SMN197SH3. The assembled genomes consisted of one optical map-verified circular chromosome for each strain, plus two plasmids for SMN013SH2 and three plasmids for SMN152SH1 and SMN197SH3, respectively. Copyright © 2018 Sheng et al.


July 7, 2019  |  

The odyssey of the ancestral Escherich strain through culture collections: an example of allopatric diversification.

More than a century ago, Theodor Escherich isolated the bacterium that was to become Escherichia coli, one of the most studied organisms. Not long after, the strain began an odyssey and landed in many laboratories across the world. As laboratory culture conditions could be responsible for major changes in bacterial strains, we conducted a genome analysis of isolates of this emblematic strain from different culture collections (England, France, the United States, Germany). Strikingly, many discrepancies between the isolates were observed, as revealed by multilocus sequence typing (MLST), the presence of virulence-associated genes, core genome MLST, and single nucleotide polymorphism/indel analyses. These differences are correlated with the phylogeographic history of the strain and were due to an unprecedented number of mutations in coding DNA repair functions such as mismatch repair (MutL) and oxidized guanine nucleotide pool cleaning (MutT), conferring a specific mutational spectrum and leading to a mutator phenotype. The mutator phenotype was probably acquired during subculturing and corresponded to second-order selection. Furthermore, all of the isolates exhibited hypersusceptibility to antibiotics due to mutations in efflux pump- and porin-encoding genes, as well as a specific mutation in the sigma factor-encoding generpoS. These defects reflect a self-preservation and nutritional competence tradeoff allowing survival under the starvation conditions imposed by storage. From a clinical point of view, dealing with such mutator strains can lead microbiologists to draw false conclusions about isolate relatedness and may impact therapeutic effectiveness. IMPORTANCE Mutator phenotypes have been described in laboratory-evolved bacteria, as well as in natural isolates. Several genes can be impacted, each of them being associated with a typical mutational spectrum. By studying one of the oldest strains available, the ancestral Escherich strain, we were able to identify its mutator status leading to tremendous genetic diversity among the isolates from various collections and allowing us to reconstruct the phylogeographic history of the strain. This mutator phenotype was probably acquired during the storage of the strain, promoting adaptation to a specific environment. Other mutations inrpoSand efflux pump- and porin-encoding genes highlight the acclimatization of the strain through self-preservation and nutritional competence regulation. This strain history can be viewed as unintentional experimental evolution in culture collections all over the word since 1885, mimicking the long-term experimental evolution ofE. coliof Lenski et al. (O. Tenaillon, J. E. Barrick, N. Ribeck, D. E. Deatherage, J. L. Blanchard, A. Dasgupta, G. C. Wu, S. Wielgoss, S. Cruveiller, C. Médigue, D. Schneider, and R. E. Lenski, Nature 536:165-170, 2016, https://doi.org/10.1038/nature18959) that shares numerous molecular features.


July 7, 2019  |  

Complete genome sequence of Escherichia albertii strain 1551-2, a potential extracellular and intracellular pathogen.

Escherichia albertii has recently been recognized as an emerging human and bird enteric pathogen. Here, we report the complete chromosome sequence of a clinical isolate of E. albertii strain 1551-2, which may provide information about the pathogenic potential of this new species and the mechanisms of evolution of Escherichia species. Copyright © 2018 Romão et al.


July 7, 2019  |  

Whole genome sequence and phenotypic characterization of a Cbm+ serotype e strain of Streptococcus mutans.

We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra-oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall-anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram-positive bacteria. When compared with the UA159 type strain, phenotypic characterization of LAR01 revealed increased biofilm formation in the presence of either glucose or sucrose but similar abilities to withstand acid and oxidative stresses. LAR01 was unable to inhibit the growth of Strpetococcus gordonii, which is consistent with the genomic data that indicate absence of mutacins that can kill mitis streptococci. On the other hand, LAR01 effectively inhibited growth of other S. mutans strains, suggesting that it may be specialized to outcompete strains from its own species. In vitro and in vivo studies using mutational and heterologous expression approaches revealed that Cbm is a virulence factor of S. mutans by mediating binding to extracellular matrix proteins and intracellular invasion. Collectively, the whole genome sequence analysis and phenotypic characterization of LAR01 provides new insights on the virulence properties of S. mutans and grants further opportunities to understand the genomic fluidity of this important human pathogen.© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


July 7, 2019  |  

Complete genome sequence of Acinetobacter indicus type strain SGAir0564 isolated from tropical air collected in Singapore.

Acinetobacter indicus (Gammaproteobacteria) is a strict aerobic nonmotile bacterium. The strain SGAir0564 was isolated from air samples collected in Singapore. The complete genome is 3.1 Mb and was assembled using a combination of short and long reads. The genome contains 2,808 protein-coding genes, 80 tRNAs, and 21 rRNA subunits. Copyright © 2018 Vettath et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.