Menu
September 22, 2019  |  

Sixteen diverse laboratory mouse reference genomes define strain-specific haplotypes and novel functional loci.

We report full-length draft de novo genome assemblies for 16 widely used inbred mouse strains and find extensive strain-specific haplotype variation. We identify and characterize 2,567 regions on the current mouse reference genome exhibiting the greatest sequence diversity. These regions are enriched for genes involved in pathogen defence and immunity and exhibit enrichment of transposable elements and signatures of recent retrotransposition events. Combinations of alleles and genes unique to an individual strain are commonly observed at these loci, reflecting distinct strain phenotypes. We used these genomes to improve the mouse reference genome, resulting in the completion of 10 new gene structures. Also, 62 new coding loci were added to the reference genome annotation. These genomes identified a large, previously unannotated, gene (Efcab3-like) encoding 5,874 amino acids. Mutant Efcab3-like mice display anomalies in multiple brain regions, suggesting a possible role for this gene in the regulation of brain development.


September 22, 2019  |  

A chromosome scale assembly of the model desiccation tolerant grass Oropetium thomaeum

Oropetium thomaeum is an emerging model for desiccation tolerance and genome size evolution in grasses. A high-quality draft genome of Oropetium was recently sequenced, but the lack of a chromosome scale assembly has hindered comparative analyses and downstream functional genomics. Here, we reassembled Oropetium, and anchored the genome into ten chromosomes using Hi-C based chromatin interactions. A combination of high-resolution RNAseq data and homology-based gene prediction identified thousands of new, conserved gene models that were absent from the V1 assembly. This includes thousands of new genes with high expression across a desiccation timecourse. The sorghum and Oropetium genomes have a surprising degree of chromosome-level collinearity, and several chromosome pairs have near perfect synteny. Other chromosomes are collinear in the gene rich chromosome arms but have experienced pericentric translocations. Together, these resources will be useful for the grass comparative genomic community and further establish Oropetium as a model resurrection plant.


September 22, 2019  |  

Development and validation of 58K SNP-array and high-density linkage map in Nile tilapia (O. niloticus).

Despite being the second most important aquaculture species in the world accounting for 7.4% of global production in 2015, tilapia aquaculture has lacked genomic tools like SNP-arrays and high-density linkage maps to improve selection accuracy and accelerate genetic progress. In this paper, we describe the development of a genotyping array containing more than 58,000 SNPs for Nile tilapia (Oreochromis niloticus). SNPs were identified from whole genome resequencing of 32 individuals from the commercial population of the Genomar strain, and were selected for the SNP-array based on polymorphic information content and physical distribution across the genome using the Orenil1.1 genome assembly as reference sequence. SNP-performance was evaluated by genotyping 4991 individuals, including 689 offspring belonging to 41 full-sib families, which revealed high-quality genotype data for 43,588 SNPs. A preliminary genetic linkage map was constructed using Lepmap2 which in turn was integrated with information from the O_niloticus_UMD1 genome assembly to produce an integrated physical and genetic linkage map comprising 40,186 SNPs distributed across 22 linkage groups (LGs). Around one-third of the LGs showed a different recombination rate between sexes, with the female being greater than the male map by a factor of 1.2 (1632.9 to 1359.6 cM, respectively), with most LGs displaying a sigmoid recombination profile. Finally, the sex-determining locus was mapped to position 40.53 cM on LG23, in the vicinity of the anti-Müllerian hormone (amh) gene. These new resources has the potential to greatly influence and improve the genetic gain when applying genomic selection and surpass the difficulties of efficient selection for invasively measured traits in Nile tilapia.


September 22, 2019  |  

The genomic architecture and molecular evolution of ant odorant receptors.

The massive expansions of odorant receptor (OR) genes in ant genomes are notable examples of rapid genome evolution and adaptive gene duplication. However, the molecular mechanisms leading to gene family expansion remain poorly understood, partly because available ant genomes are fragmentary. Here, we present a highly contiguous, chromosome-level assembly of the clonal raider ant genome, revealing the largest known OR repertoire in an insect. While most ant ORs originate via local tandem duplication, we also observe several cases of dispersed duplication followed by tandem duplication in the most rapidly evolving OR clades. We found that areas of unusually high transposable element density (TE islands) were depauperate in ORs in the clonal raider ant, and found no evidence for retrotransposition of ORs. However, OR loci were enriched for transposons relative to the genome as a whole, potentially facilitating tandem duplication by unequal crossing over. We also found that ant OR genes are highly AT-rich compared to other genes. In contrast, in flies, OR genes are dispersed and largely isolated within the genome, and we find that fly ORs are not AT-rich. The genomic architecture and composition of ant ORs thus show convergence with the unrelated vertebrate ORs rather than the related fly ORs. This might be related to the greater gene numbers and/or potential similarities in gene regulation between ants and vertebrates as compared to flies.© 2018 McKenzie and Kronauer; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Analysis of structural variants in four African cichlids highlights an association with developmental and immune related genes

African Lakes Cichlids are one of the most impressive example of adaptive radiation. Independently in Lake Victoria, Tanganyika, and Malawi, several hundreds of species arose within the last 10 million to 100,000 years. Whereas most analyses in cichlids focused on nucleotide substitutions across species to investigate the genetic bases of this explosive radiation, to date, no study has investigated the contribution of structural variants (SVs) to speciation events (through a reduction of gene flow) and adaptation to different ecological niches. Here, we annotate and characterize the repertoires and evolutionary potential of different SV classes (deletion, duplication, inversion, insertions and translocations) in five cichlid species (Astatotilapia burtoni, Metriaclima zebra, Neolamprologus brichardi, Pundamilia nyererei and Oreochromis niloticus). We investigate the patterns of gain/loss evolution across the phylogeny for each SV type enabling the identification of both lineage specific events and a set of conserved SVs, common to all four species in the radiation. Both deletion and inversion events show a significant overlap with SINE elements, while inversions additionally show a limited, but significant association with DNA transposons. Genes lying inside inverted regions are enriched for genes regulating behaviour, or involved in skeletal and visual system development. Moreover, we find that duplicated genes show enrichment for textquoterightantigen processing and presentationtextquoteright (GO:0019882) and other immune related categories. Altogether, we provide the first, comprehensive overview of rearrangement evolution in East African Cichlids, and some initial insights into their possible contribution to adaptation.


September 22, 2019  |  

Genomic characterization of a B chromosome in Lake Malawi cichlid fishes.

B chromosomes (Bs) were discovered a century ago, and since then, most studies have focused on describing their distribution and abundance using traditional cytogenetics. Only recently have attempts been made to understand their structure and evolution at the level of DNA sequence. Many questions regarding the origin, structure, function, and evolution of B chromosomes remain unanswered. Here, we identify B chromosome sequences from several species of cichlid fish from Lake Malawi by examining the ratios of DNA sequence coverage in individuals with or without B chromosomes. We examined the efficiency of this method, and compared results using both Illumina and PacBio sequence data. The B chromosome sequences detected in 13 individuals from 7 species were compared to assess the rates of sequence replacement. B-specific sequence common to at least 12 of the 13 datasets were identified as the “Core” B chromosome. The location of B sequence homologs throughout the genome provides further support for theories of B chromosome evolution. Finally, we identified genes and gene fragments located on the B chromosome, some of which may regulate the segregation and maintenance of the B chromosome.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.