Menu
April 21, 2020  |  

Lateral transfers of large DNA fragments spread functional genes among grasses.

A fundamental tenet of multicellular eukaryotic evolution is that vertical inheritance is paramount, with natural selection acting on genetic variants transferred from parents to offspring. This lineal process means that an organism’s adaptive potential can be restricted by its evolutionary history, the amount of standing genetic variation, and its mutation rate. Lateral gene transfer (LGT) theoretically provides a mechanism to bypass many of these limitations, but the evolutionary importance and frequency of this process in multicellular eukaryotes, such as plants, remains debated. We address this issue by assembling a chromosome-level genome for the grass Alloteropsis semialata, a species surmised to exhibit two LGTs, and screen it for other grass-to-grass LGTs using genomic data from 146 other grass species. Through stringent phylogenomic analyses, we discovered 57 additional LGTs in the A. semialata nuclear genome, involving at least nine different donor species. The LGTs are clustered in 23 laterally acquired genomic fragments that are up to 170 kb long and have accumulated during the diversification of Alloteropsis. The majority of the 59 LGTs in A. semialata are expressed, and we show that they have added functions to the recipient genome. Functional LGTs were further detected in the genomes of five other grass species, demonstrating that this process is likely widespread in this globally important group of plants. LGT therefore appears to represent a potent evolutionary force capable of spreading functional genes among distantly related grass species. Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59?kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Strengths and potential pitfalls of hay-transfer for ecological restoration revealed by RAD-seq analysis in floodplain Arabis species

Achieving high intraspecific genetic diversity is a critical goal in ecological restoration as it increases the adaptive potential and long-term resilience of populations. Thus, we investigated genetic diversity within and between pristine sites in a fossil floodplain and compared it to sites restored by hay-transfer between 1997 and 2014. RAD-seq genotyping revealed that the stenoecious flood-plain species Arabis nemorensis is co-occurring with individuals that, based on ploidy, ITS-sequencing and morphology, probably belong to the close relative Arabis sagittata, which has a documented preference for dry calcareous grasslands but has not been reported in floodplain meadows. We show that hay-transfer maintains genetic diversity for both species. Additionally, in A. sagittata, transfer from multiple genetically isolated pristine sites resulted in restored sites with increased diversity and admixed local genotypes. In A. nemorensis, transfer did not create novel admixture dynamics because genetic diversity between pristine sites was less differentiated. Thus, the effects of hay-transfer on genetic diversity also depend on the genetic makeup of the donor communities of each species, especially when local material is mixed. Our results demonstrate the efficiency of hay-transfer for habitat restoration and emphasize the importance of pre-restoration characterization of micro-geographic patterns of intraspecific diversity of the community to guarantee that restoration practices reach their goal, i.e. maximize the adaptive potential of the entire restored plant community. Overlooking these patterns may alter the balance between species in the community. Additionally, our comparison of summary statistics obtained from de novo and reference-based RAD-seq pipelines shows that the genomic impact of restoration can be reliably monitored in species lacking prior genomic knowledge.


April 21, 2020  |  

Evolutionary superscaffolding and chromosome anchoring to improve Anopheles genome assemblies

Background New sequencing technologies have lowered financial barriers to whole genome sequencing, but resulting assemblies are often fragmented and far from textquoteleftfinishedtextquoteright. Updating multi-scaffold drafts to chromosome-level status can be achieved through experimental mapping or re-sequencing efforts. Avoiding the costs associated with such approaches, comparative genomic analysis of gene order conservation (synteny) to predict scaffold neighbours (adjacencies) offers a potentially useful complementary method for improving draft assemblies.Results We employed three gene synteny-based methods applied to 21 Anopheles mosquito assemblies to produce consensus sets of scaffold adjacencies. For subsets of the assemblies we integrated these with additional supporting data to confirm and complement the synteny-based adjacencies: six with physical mapping data that anchor scaffolds to chromosome locations, 13 with paired-end RNA sequencing (RNAseq) data, and three with new assemblies based on re-scaffolding or Pacific Biosciences long-read data. Our combined analyses produced 20 new superscaffolded assemblies with improved contiguities: seven for which assignments of non-anchored scaffolds to chromosome arms span more than 75% of the assemblies, and a further seven with chromosome anchoring including an 88% anchored Anopheles arabiensis assembly and, respectively, 73% and 84% anchored assemblies with comprehensively updated cytogenetic photomaps for Anopheles funestus and Anopheles stephensi.Conclusions Experimental data from probe mapping, RNAseq, or long-read technologies, where available, all contribute to successful upgrading of draft assemblies. Our comparisons show that gene synteny-based computational methods represent a valuable alternative or complementary approach. Our improved Anopheles reference assemblies highlight the utility of applying comparative genomics approaches to improve community genomic resources.ADADSEQAGOAGOUTI-basedAGOUTIannotated genome optimization using transcriptome information toolALNalignment-basedCAMSAcomparative analysis and merging of scaffold assemblies toolDPdynamic programmingFISHfluorescence in situ hybridizationGAGOS-ASMGOS-ASMGene order scaffold assemblerKbpkilobasepairsMbpmegabasepairsOSORTHOSTITCHPacBioPacific BiosciencesPBPacBio-basedPHYphysical-mapping-basedRNAseqRNA sequencingQTLquantitative trait lociSYNsynteny-based.


April 21, 2020  |  

A high-quality genome assembly from a single, field-collected spotted lanternfly (Lycorma delicatula) using the PacBio Sequel II system

Background A high-quality reference genome is an essential tool for applied and basic research on arthropods. Long-read sequencing technologies may be used to generate more complete and contiguous genome assemblies than alternate technologies; however, long-read methods have historically had greater input DNA requirements and higher costs than next-generation sequencing, which are barriers to their use on many samples. Here, we present a 2.3 Gb de novo genome assembly of a field-collected adult female spotted lanternfly (Lycorma delicatula) using a single Pacific Biosciences SMRT Cell. The spotted lanternfly is an invasive species recently discovered in the northeastern United States that threatens to damage economically important crop plants in the region. Results The DNA from 1 individual was used to make 1 standard, size-selected library with an average DNA fragment size of ~20 kb. The library was run on 1 Sequel II SMRT Cell 8M, generating a total of 132 Gb of long-read sequences, of which 82 Gb were from unique library molecules, representing ~36× coverage of the genome. The assembly had high contiguity (contig N50 length = 1.5 Mb), completeness, and sequence level accuracy as estimated by conserved gene set analysis (96.8% of conserved genes both complete and without frame shift errors). Furthermore, it was possible to segregate more than half of the diploid genome into the 2 separate haplotypes. The assembly also recovered 2 microbial symbiont genomes known to be associated with L. delicatula, each microbial genome being assembled into a single contig. Conclusions We demonstrate that field-collected arthropods can be used for the rapid generation of high-quality genome assemblies, an attractive approach for projects on emerging invasive species, disease vectors, or conservation efforts of endangered species.


April 21, 2020  |  

A chromosome-level draft genome of the grain aphid Sitobion miscanthi.

Sitobion miscanthi is an ideal model for studying host plant specificity, parthenogenesis-based phenotypic plasticity, and interactions between insects and other species of various trophic levels, such as viruses, bacteria, plants, and natural enemies. However, the genome information for this species has not yet to be sequenced and published. Here, we analyzed the entire genome of a parthenogenetic female aphid colony using Pacific Biosciences long-read sequencing and Hi-C data to generate chromosome-length scaffolds and a highly contiguous genome assembly.The final draft genome assembly from 33.88 Gb of raw data was ~397.90 Mb in size, with a 2.05 Mb contig N50. Nine chromosomes were further assembled based on Hi-C data to a 377.19 Mb final size with a 36.26 Mb scaffold N50. The identified repeat sequences accounted for 26.41% of the genome, and 16,006 protein-coding genes were annotated. According to the phylogenetic analysis, S. miscanthi is closely related to Acyrthosiphon pisum, with S. miscanthi diverging from their common ancestor ~25.0-44.9 million years ago.We generated a high-quality draft of the S. miscanthi genome. This genome assembly should help promote research on the lifestyle and feeding specificity of aphids and their interactions with each other and species at other trophic levels. It can serve as a resource for accelerating genome-assisted improvements in insecticide-resistant management and environmentally safe aphid management. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Chromosomal-level assembly of the blolsod clam, Scapharca (Anadara) broughtonii, using long sequence reads and Hi-C.

The blood clam, Scapharca (Anadara) broughtonii, is an economically and ecologically important marine bivalve of the family Arcidae. Efforts to study their population genetics, breeding, cultivation, and stock enrichment have been somewhat hindered by the lack of a reference genome. Herein, we report the complete genome sequence of S. broughtonii, a first reference genome of the family Arcidae.A total of 75.79 Gb clean data were generated with the Pacific Biosciences and Oxford Nanopore platforms, which represented approximately 86× coverage of the S. broughtonii genome. De novo assembly of these long reads resulted in an 884.5-Mb genome, with a contig N50 of 1.80 Mb and scaffold N50 of 45.00 Mb. Genome Hi-C scaffolding resulted in 19 chromosomes containing 99.35% of bases in the assembled genome. Genome annotation revealed that nearly half of the genome (46.1%) is composed of repeated sequences, while 24,045 protein-coding genes were predicted and 84.7% of them were annotated.We report here a chromosomal-level assembly of the S. broughtonii genome based on long-read sequencing and Hi-C scaffolding. The genomic data can serve as a reference for the family Arcidae and will provide a valuable resource for the scientific community and aquaculture sector. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China.

Acer yangbiense is a newly described critically endangered endemic maple tree confined to Yangbi County in Yunnan Province in Southwest China. It was included in a programme for rescuing the most threatened species in China, focusing on “plant species with extremely small populations (PSESP)”.We generated 64, 94, and 110 Gb of raw DNA sequences and obtained a chromosome-level genome assembly of A. yangbiense through a combination of Pacific Biosciences Single-molecule Real-time, Illumina HiSeq X, and Hi-C mapping, respectively. The final genome assembly is ~666 Mb, with 13 chromosomes covering ~97% of the genome and scaffold N50 sizes of 45 Mb. Further, BUSCO analysis recovered 95.5% complete BUSCO genes. The total number of repetitive elements account for 68.0% of the A. yangbiense genome. Genome annotation generated 28,320 protein-coding genes, assisted by a combination of prediction and transcriptome sequencing. In addition, a nearly 1:1 orthology ratio of dot plots of longer syntenic blocks revealed a similar evolutionary history between A. yangbiense and grape, indicating that the genome has not undergone a whole-genome duplication event after the core eudicot common hexaploidization.Here, we report a high-quality de novo genome assembly of A. yangbiense, the first genome for the genus Acer and the family Aceraceae. This will provide fundamental conservation genomics resources, as well as representing a new high-quality reference genome for the economically important Acer lineage and the wider order of Sapindales. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Klebsiella quasipneumoniae Provides a Window into Carbapenemase Gene Transfer, Plasmid Rearrangements, and Patient Interactions with the Hospital Environment.

Several emerging pathogens have arisen as a result of selection pressures exerted by modern health care. Klebsiella quasipneumoniae was recently defined as a new species, yet its prevalence, niche, and propensity to acquire antimicrobial resistance genes are not fully described. We have been tracking inter- and intraspecies transmission of the Klebsiella pneumoniae carbapenemase (KPC) gene, blaKPC, between bacteria isolated from a single institution. We applied a combination of Illumina and PacBio whole-genome sequencing to identify and compare K. quasipneumoniae from patients and the hospital environment over 10- and 5-year periods, respectively. There were 32 blaKPC-positive K. quasipneumoniae isolates, all of which were identified as K. pneumoniae in the clinical microbiology laboratory, from 8 patients and 11 sink drains, with evidence for seven separate blaKPC plasmid acquisitions. Analysis of a single subclade of K. quasipneumoniae subsp. quasipneumoniae (n?=?23 isolates) from three patients and six rooms demonstrated seeding of a sink by a patient, subsequent persistence of the strain in the hospital environment, and then possible transmission to another patient. Longitudinal analysis of this strain demonstrated the acquisition of two unique blaKPC plasmids and then subsequent within-strain genetic rearrangement through transposition and homologous recombination. Our analysis highlights the apparent molecular propensity of K. quasipneumoniae to persist in the environment as well as acquire carbapenemase plasmids from other species and enabled an assessment of the genetic rearrangements which may facilitate horizontal transmission of carbapenemases. Copyright © 2019 Mathers et al.


April 21, 2020  |  

Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch).

The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world’s most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus.The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity, were clustered using Phase Genomics Hi-C interaction maps. Consistent with the commonly observed 2n = 8 karyotype of R. maidis, most of the contigs (473 spanning 321 Mb) were successfully oriented into 4 scaffolds. The genome assembly captured the full length of 95.8% of the core eukaryotic genes, indicating that it is highly complete. Repetitive sequences accounted for 21.2% of the assembly, and a total of 17,629 protein-coding genes were predicted with integrated evidence from ab initio and homology-based gene predictions and transcriptome sequences generated with both Pacific Biosciences and Illumina. An analysis of likely horizontally transferred genes identified 2 from bacteria, 7 from fungi, 2 from protozoa, and 9 from algae. Repeat elements, transposons, and genes encoding likely detoxification enzymes (cytochrome P450s, glutathione S-transferases, carboxylesterases, uridine diphosphate-glucosyltransferases, and ABC transporters) were identified in the genome sequence. Other than Buchnera aphidicola (642,929 base pairs, 602 genes), no endosymbiont bacteria were found in R. maidis.A high-quality R. maidis genome was assembled at the chromosome level. This genome sequence will enable further research related to ecological interactions, virus transmission, pesticide resistance, and other aspects of R. maidis biology. It also serves as a valuable resource for comparative investigation of other aphid species. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes.

African cichlid fishes are well known for their rapid radiations and are a model system for studying evolutionary processes. Here we compare multiple, high-quality, chromosome-scale genome assemblies to elucidate the genetic mechanisms underlying cichlid diversification and study how genome structure evolves in rapidly radiating lineages.We re-anchored our recent assembly of the Nile tilapia (Oreochromis niloticus) genome using a new high-density genetic map. We also developed a new de novo genome assembly of the Lake Malawi cichlid, Metriaclima zebra, using high-coverage Pacific Biosciences sequencing, and anchored contigs to linkage groups (LGs) using 4 different genetic maps. These new anchored assemblies allow the first chromosome-scale comparisons of African cichlid genomes. Large intra-chromosomal structural differences (~2-28 megabase pairs) among species are common, while inter-chromosomal differences are rare (<10 megabase pairs total). Placement of the centromeres within the chromosome-scale assemblies identifies large structural differences that explain many of the karyotype differences among species. Structural differences are also associated with unique patterns of recombination on sex chromosomes. Structural differences on LG9, LG11, and LG20 are associated with reduced recombination, indicative of inversions between the rock- and sand-dwelling clades of Lake Malawi cichlids. M. zebra has a larger number of recent transposable element insertions compared with O. niloticus, suggesting that several transposable element families have a higher rate of insertion in the haplochromine cichlid lineage.This study identifies novel structural variation among East African cichlid genomes and provides a new set of genomic resources to support research on the mechanisms driving cichlid adaptation and speciation. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

The Modern View of B Chromosomes Under the Impact of High Scale Omics Analyses.

Supernumerary B chromosomes (Bs) are extra karyotype units in addition to A chromosomes, and are found in some fungi and thousands of animals and plant species. Bs are uniquely characterized due to their non-Mendelian inheritance, and represent one of the best examples of genomic conflict. Over the last decades, their genetic composition, function and evolution have remained an unresolved query, although a few successful attempts have been made to address these phenomena. A classical concept based on cytogenetics and genetics is that Bs are selfish and abundant with DNA repeats and transposons, and in most cases, they do not carry any function. However, recently, the modern quantum development of high scale multi-omics techniques has shifted B research towards a new-born field that we call “B-omics”. We review the recent literature and add novel perspectives to the B research, discussing the role of new technologies to understand the mechanistic perspectives of the molecular evolution and function of Bs. The modern view states that B chromosomes are enriched with genes for many significant biological functions, including but not limited to the interesting set of genes related to cell cycle and chromosome structure. Furthermore, the presence of B chromosomes could favor genomic rearrangements and influence the nuclear environment affecting the function of other chromatin regions. We hypothesize that B chromosomes might play a key function in driving their transmission and maintenance inside the cell, as well as offer an extra genomic compartment for evolution.


April 21, 2020  |  

Divergent evolution in the genomes of closely related lacertids, Lacerta viridis and L. bilineata, and implications for speciation.

Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes.Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated.The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids. © The Author(s) 2018. Published by Oxford University Press.


April 21, 2020  |  

A chromosome-level sequence assembly reveals the structure of the Arabidopsis thaliana Nd-1 genome and its gene set.

In addition to the BAC-based reference sequence of the accession Columbia-0 from the year 2000, several short read assemblies of THE plant model organism Arabidopsis thaliana were published during the last years. Also, a SMRT-based assembly of Landsberg erecta has been generated that identified translocation and inversion polymorphisms between two genotypes of the species. Here we provide a chromosome-arm level assembly of the A. thaliana accession Niederzenz-1 (AthNd-1_v2c) based on SMRT sequencing data. The best assembly comprises 69 nucleome sequences and displays a contig length of up to 16 Mbp. Compared to an earlier Illumina short read-based NGS assembly (AthNd-1_v1), a 75 fold increase in contiguity was observed for AthNd-1_v2c. To assign contig locations independent from the Col-0 gold standard reference sequence, we used genetic anchoring to generate a de novo assembly. In addition, we assembled the chondrome and plastome sequences. Detailed analyses of AthNd-1_v2c allowed reliable identification of large genomic rearrangements between A. thaliana accessions contributing to differences in the gene sets that distinguish the genotypes. One of the differences detected identified a gene that is lacking from the Col-0 gold standard sequence. This de novo assembly extends the known proportion of the A. thaliana pan-genome.


April 21, 2020  |  

Human contamination in bacterial genomes has created thousands of spurious proteins.

Contaminant sequences that appear in published genomes can cause numerous problems for downstream analyses, particularly for evolutionary studies and metagenomics projects. Our large-scale scan of complete and draft bacterial and archaeal genomes in the NCBI RefSeq database reveals that 2250 genomes are contaminated by human sequence. The contaminant sequences derive primarily from high-copy human repeat regions, which themselves are not adequately represented in the current human reference genome, GRCh38. The absence of the sequences from the human assembly offers a likely explanation for their presence in bacterial assemblies. In some cases, the contaminating contigs have been erroneously annotated as containing protein-coding sequences, which over time have propagated to create spurious protein “families” across multiple prokaryotic and eukaryotic genomes. As a result, 3437 spurious protein entries are currently present in the widely used nr and TrEMBL protein databases. We report here an extensive list of contaminant sequences in bacterial genome assemblies and the proteins associated with them. We found that nearly all contaminants occurred in small contigs in draft genomes, which suggests that filtering out small contigs from draft genome assemblies may mitigate the issue of contamination while still keeping nearly all of the genuine genomic sequences. © 2019 Breitwieser et al.; Published by Cold Spring Harbor Laboratory Press.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.