X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing.

For the first time, full-length 16S rRNA sequencing method was applied to disclose the bacterial species and communities of a full-scale wastewater treatment plant using an anaerobic/anoxic/oxic (A/A/O) process in Wuhan, China. The compositions of the bacteria at phylum and class levels in the activated sludge were similar to which revealed by Illumina Miseq sequencing. At genus and species levels, third-generation sequencing showed great merits and accuracy. Typical functional taxa classified to ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria (DB), anaerobic ammonium oxidation bacteria (ANAMMOXB) and polyphosphate-accumulating organisms (PAOs) were presented, which were Nitrosomonas (1.11%), Nitrospira (3.56%), Pseudomonas (3.88%),…

Read More »

Tuesday, April 21, 2020

Genomic analysis of Marinobacter sp. NP-4 and NP-6 isolated from the deep-sea oceanic crust on the western flank of the Mid-Atlantic Ridge

Two Marinobacter sp. NP-4 and NP-6 were isolated from a deep oceanic basaltic crust at North Pond, located at the western flank of the Mid-Atlantic Ridge. These two strains are capable of using multiple carbon sources such as acetate, succinate, glucose and sucrose while take oxygen as a primary electron acceptor. The strain NP-4 is also able to grow anaerobically under 20?MPa, with nitrate as the electron acceptor, thus represents a piezotolerant. To explore the metabolic potentials of Marinobacter sp. NP-4 and NP-6, the complete genome of NP-4 and close-to-complete genome of NP-6 were sequenced. The genome of NP-4 contains…

Read More »

Tuesday, April 21, 2020

Harnessing long-read amplicon sequencing to uncover NRPS and Type I PKS gene sequence diversity in polar desert soils.

The severity of environmental conditions at Earth’s frigid zones present attractive opportunities for microbial biomining due to their heightened potential as reservoirs for novel secondary metabolites. Arid soil microbiomes within the Antarctic and Arctic circles are remarkably rich in Actinobacteria and Proteobacteria, bacterial phyla known to be prolific producers of natural products. Yet the diversity of secondary metabolite genes within these cold, extreme environments remain largely unknown. Here, we employed amplicon sequencing using PacBio RS II, a third generation long-read platform, to survey over 200 soils spanning twelve east Antarctic and high Arctic sites for natural product-encoding genes, specifically targeting…

Read More »

Tuesday, April 21, 2020

Information about variations in multiple copies of bacterial 16S rRNA genes may aid in species identification.

Variable region analysis of 16S rRNA gene sequences is the most common tool in bacterial taxonomic studies. Although used for distinguishing bacterial species, its use remains limited due to the presence of variable copy numbers with sequence variation in the genomes. In this study, 16S rRNA gene sequences, obtained from completely assembled whole genome and Sanger electrophoresis sequencing of cloned PCR products from Serratia fonticola GS2, were compared. Sanger sequencing produced a combination of sequences from multiple copies of 16S rRNA genes. To determine whether the variant copies of 16S rRNA genes affected Sanger sequencing, two ratios (5:5 and 8:2)…

Read More »

Tuesday, April 21, 2020

Carbohydrate catabolic capability of a Flavobacteriia bacterium isolated from hadal water.

Flavobacteriia are abundant in many marine environments including hadal waters, as demonstrated recently. However, it is unclear how this flavobacterial population adapts to hadal conditions. In this study, extensive comparative genomic analyses were performed for the flavobacterial strain Euzebyella marina RN62 isolated from the Mariana Trench hadal water in low abundance. The complete genome of RN62 possessed a considerable number of carbohydrate-active enzymes with a different composition. There was a predominance of GH family 13 proteins compared to closely related relatives, suggesting that RN62 has preserved a certain capacity for carbohydrate utilization and that the hadal ocean may hold an…

Read More »

Tuesday, April 21, 2020

Confident phylogenetic identification of uncultured prokaryotes through long read amplicon sequencing of the 16S-ITS-23S rRNA operon.

Amplicon sequencing of the 16S rRNA gene is the predominant method to quantify microbial compositions and to discover novel lineages. However, traditional short amplicons often do not contain enough information to confidently resolve their phylogeny. Here we present a cost-effective protocol that amplifies a large part of the rRNA operon and sequences the amplicons with PacBio technology. We tested our method on a mock community and developed a read-curation pipeline that reduces the overall read error rate to 0.18%. Applying our method on four environmental samples, we captured near full-length rRNA operon amplicons from a large diversity of prokaryotes. The…

Read More »

Tuesday, April 21, 2020

Genome Features and Secondary Metabolites Biosynthetic Potential of the Class Ktedonobacteria.

The prevalence of antibiotic resistance and the decrease in novel antibiotic discovery in recent years necessitates the identification of potentially novel microbial resources to produce natural products. Ktedonobacteria, a class of deeply branched bacterial lineage in the ancient phylum Chloroflexi, are ubiquitous in terrestrial environments and characterized by their large genome size and complex life cycle. These characteristics indicate Ktedonobacteria as a potential active producer of bioactive compounds. In this study, we observed the existence of a putative “megaplasmid,” multiple copies of ribosomal RNA operons, and high ratio of hypothetical proteins with unknown functions in the class Ktedonobacteria. Furthermore, a…

Read More »

Tuesday, April 21, 2020

Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community.

DNA methylation plays important roles in prokaryotes, and their genomic landscapes-prokaryotic epigenomes-have recently begun to be disclosed. However, our knowledge of prokaryotic methylation systems is focused on those of culturable microbes, which are rare in nature. Here, we used single-molecule real-time and circular consensus sequencing techniques to reveal the ‘metaepigenomes’ of a microbial community in the largest lake in Japan, Lake Biwa. We reconstructed 19 draft genomes from diverse bacterial and archaeal groups, most of which are yet to be cultured. The analysis of DNA chemical modifications in those genomes revealed 22 methylated motifs, nine of which were novel. We…

Read More »

Subscribe for blog updates:

Archives