X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Genome sequence resource for Ilyonectria mors-panacis, causing rusty root rot of Panax notoginseng.

Ilyonectria mors-panacis is a serious disease hampering the production of Panax notoginseng, an important Chinese medicinal herb, widely used for its anti-inflammatory, anti-fatigue, hepato-protective, and coronary heart disease prevention effects. Here, we report the first Illumina-Pacbio hybrid sequenced draft genome assembly of I. mors-panacis strain G3B and its annotation. The availability of this genome sequence not only represents an important tool toward understanding the genetics behind the infection mechanism of I. mors-panacis strain G3B but also will help illuminate the complexities of the taxonomy of this species.

Read More »

Tuesday, April 21, 2020

Heterologous Expression of Ilicicolin H Biosynthetic Gene Cluster and Production of a New Potent Antifungal Reagent, Ilicicolin J.

Ilicicolin H is a broad-spectrum antifungal agent targeting mitochondrial cytochrome bc1 reductase. Unfortunately, ilicicolin H shows reduced activities in vivo. Here, we report our effort on the identification of ilicicolin H biosynthetic gene cluster (BGC) by genomic sequencing a producing strain, Neonectria sp. DH2, and its heterologous production in Aspergillus nidulans. In addition, a shunt product with similar antifungal activities, ilicicolin J, was uncovered. This effort would provide a base for future combinatorial biosynthesis of ilicicolin H analogues. Bioinformatics analysis suggests that the backbone of ilicicolin H is assembled by a polyketide-nonribosomal peptide synthethase (IliA), and then offloaded with a…

Read More »

Tuesday, April 21, 2020

Genome sequence of the Chinese white wax scale insect Ericerus pela: the first draft genome for the Coccidae family of scale insects.

The Chinese white wax scale insect, Ericerus pela, is best known for producing wax, which has been widely used in candle production, casting, Chinese medicine, and wax printing products for thousands of years. The secretion of wax, and other unusual features of scale insects, is thought to be an adaptation to their change from an ancestral ground-dwelling lifestyle to a sedentary lifestyle on the higher parts of plants. As well as helping to improve its economic value, studies of E. pela might also help to explain the adaptation of scale insects. However, no genomic data are currently available for E.…

Read More »

Tuesday, April 21, 2020

Full-Length Multi-Barcoding: DNA Barcoding from Single Ingredient to Complex Mixtures.

DNA barcoding has been used for decades, although it has mostly been applied to somesingle-species. Traditional Chinese medicine (TCM), which is mainly used in the form ofcombination-one type of the multi-species, identification is crucial for clinical usage.Next-generation Sequencing (NGS) has been used to address this authentication issue for the pastfew years, but conventional NGS technology is hampered in application due to its short sequencingreads and systematic errors. Here, a novel method, Full-length multi-barcoding (FLMB) vialong-read sequencing, is employed for the identification of biological compositions in herbalcompound formulas in adequate and well controlled studies. By directly sequencing the full-lengthamplicons of ITS2…

Read More »

Tuesday, April 21, 2020

The Reference Genome Sequence of Scutellaria baicalensis Provides Insights into the Evolution of Wogonin Biosynthesis.

Scutellaria baicalensis Georgi is important in Chinese traditional medicine where preparations of dried roots, “Huang Qin,” are used for liver and lung complaints and as complementary cancer treatments. We report a high-quality reference genome sequence for S. baicalensis where 93% of the 408.14-Mb genome has been assembled into nine pseudochromosomes with a super-N50 of 33.2 Mb. Comparison of this sequence with those of closely related species in the order Lamiales, Sesamum indicum and Salvia splendens, revealed that a specialized metabolic pathway for the synthesis of 4′-deoxyflavone bioactives evolved in the genus Scutellaria. We found that the gene encoding a specific…

Read More »

Tuesday, April 21, 2020

Genome of Crucihimalaya himalaica, a close relative of Arabidopsis, shows ecological adaptation to high altitude.

Crucihimalaya himalaica, a close relative of Arabidopsis and Capsella, grows on the Qinghai-Tibet Plateau (QTP) about 4,000 m above sea level and represents an attractive model system for studying speciation and ecological adaptation in extreme environments. We assembled a draft genome sequence of 234.72 Mb encoding 27,019 genes and investigated its origin and adaptive evolutionary mechanisms. Phylogenomic analyses based on 4,586 single-copy genes revealed that C. himalaica is most closely related to Capsella (estimated divergence 8.8 to 12.2 Mya), whereas both species form a sister clade to Arabidopsis thaliana and Arabidopsis lyrata, from which they diverged between 12.7 and 17.2…

Read More »

Tuesday, April 21, 2020

Comparative analysis of proteomic and metabolomic profiles of different species of Paris.

An extract prepared from species of Paris is the most widely consumed herbal product in China. The genus Paris includes a variety of genotypes with different medicinal component contents but only two are defined as official sources. Closely related species have different medicinal properties because of differential expression of proteins and metabolites. To better understand the molecular basis of these differences, we examined proteomic and metabolomic changes in rhizomes of P. polyphylla var. chinensis, P. polyphylla var. yunnanensis, and P. fargesii var. fargesii using a technique known as sequential window acquisition of all theoretical mass spectra as well as gas…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »