June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


June 1, 2021  |  

Genome analysis of a bacterium that causes lameness.

Lameness is a significant problem resulting in millions of dollars in lost revenue annually. In commercial broilers, the most common cause of lameness is bacterial chondronecrosis with osteomyelitis (BCO). We are using a wire flooring model to induce lameness attributable to BCO. We used 16S ribosomal DNA sequencing to determine that Staphylococcus spp. were the main species associated with BCO. Staphylococcus agnetis, which previously had not been isolated from poultry, was the principal species isolated from the majority of the bone lesion samples. Administering S. agnetis in the drinking water to broilers reared on wire flooring increased the incidence of BCO three-fold when compared with broilers drinking tap water (P = 0.001). We found that the minimum effective dose of Staphylococcus agnetis to induce BCO in broilers grown on wire flooring experiment is 105 cfu/ml. We used PacBio and Illumina sequencing to assemble a 2.4 Mbp contig representing the genome and a 34 kbp contig for the largest plasmid of S. agnetis. Annotation of this genome is underway through comparative genomics with other Staphylococcus genomes, and identification of virulence factors. Our goal is to elucidate genetic diversity, toxins, and pathogenicity determinants, for this poorly characterized species. Isolating pathogenic bacterial species, defining their likely route of transmission to broilers, and genomic analyses will contribute substantially to the development of measures for mitigating BCO losses in poultry.


June 1, 2021  |  

SMRT Sequencing of the alala genome

Single Molecule Real-Time (SMRT) Sequencing was used to generate long reads for whole genome shotgun sequencing of the genome of the`alala (Hawaiian crow). The ‘alala is endemic to Hawaii, and the only surviving lineage of the crow family, Corvidae, in the Hawaiian Islands. The population declined to less than 20 individuals in the 1990s, and today this charismatic species is extinct in the wild. Currently existing in only two captive breeding facilities, reintroduction of the ‘alala is scheduled to begin in the Fall of 2016. Reintroduction efforts will be assisted by information from the ‘alala genome generated and assembled by SMRT Technology, which will allow detailed analysis of genes associated with immunity, behavior, and learning. Using SMRT Sequencing, we present here best practices for achieving long reads for whole genome shotgun sequencing for complex plant and animal genomes such as the ‘alala genome. With recent advances in SMRTbell library preparation, P6-C4 chemistry and 6-hour movies, the number of useable bases now exceeds 1 Gb per SMRT Cell. Read lengths averaging 10 – 15 kb can be routinely achieved, with the longest reads approaching 70 kb. Furthermore, > 25% of useable bases are in reads greater than 30 kb, advantageous for generating contiguous draft assemblies of contig N50 up to 5 Mb. De novo assemblies of large genomes are now more tractable using SMRT Sequencing as the standalone technology. We also present guidelines for planning out projects for the de novo assembly of large genomes.


June 1, 2021  |  

High-quality de novo genome assembly and intra-individual mitochondrial instability in the critically endangered kakapo

The kakapo (Strigops habroptila) is a large, flightless parrot endemic to New Zealand. It is highly endangered with only ~150 individuals remaining, and intensive conservation efforts are underway to save this iconic species from extinction. These include genetic studies to understand critical genes relevant to fertility, adaptation and disease resistance, and genetic diversity across the remaining population for future breeding program decisions. To aid with these efforts, we have generated a high-quality de novo genome assembly using PacBio long-read sequencing. Using the new diploid-aware FALCON-Unzip assembler, the resulting genome of 1.06 Gb has a contig N50 of 5.6 Mb (largest contig 29.3 Mb), >350-times more contiguous compared to a recent short-read assembly of a closely related parrot (kea) species. We highlight the benefits of the higher contiguity and greater completeness of the kakapo genome assembly through examples of fully resolved genes important in wildlife conservation (contrasted with fragmented and incomplete gene resolution in short-read assemblies), in some cases even providing sequence for regions orthologous to gaps of missing sequence in the chicken reference genome. We also highlight the complete resolution of the kakapo mitochondrial genome, fully containing the mitochondrial control region which is missing from the previous dedicated kakapomitochondrial genome NCBI entry. For this region, we observed a marked heterogeneity in the number of tandem repeats in different mtDNAmolecules from a single bird tissue, highlighting the enhanced molecular resolution uniquely afforded by long-read, single-molecule PacBio sequencing.


April 21, 2020  |  

Identification and characterization of chicken circovirus from commercial broiler chickens in China.

Circoviruses are found in many species, including mammals, birds, lower vertebrates and invertebrates. To date, there are no reports of circovirus-induced diseases in chickens. In this study, we identified a new strain of chicken circovirus (CCV) by PacBio third-generation sequencing samples from chickens with acute gastroenteritis in a Shandong commercial broiler farm in China. The complete genome of CCV was verified by inverse PCR. Genomic analysis revealed that CCV codes two inverse open reading frames (ORFs), and a potential stem-loop structure was present at the 5′ end with a structure typical of a circular virus. Phylogenetic tree analysis showed that CCV formed an independent branch between mammalian and avian circovirus, and homology analysis indicated that the homology of CCV with 21 other known circoviruses was less than 40%. Thus, this CCV strain represents a new species in the genus Circovirus. The infection rate of CCV in 12 chickens with diarrhoea was 100%, but no CCV was found in healthy chickens, thereby indicating that the novel CCV strain is highly associated with acute infectious gastroenteritis in chickens. The emergence of a novel CCV in commercial broiler chickens is highly concerning for the broiler industry. © 2019 Blackwell Verlag GmbH.


April 21, 2020  |  

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions in their entirety with higher continuity and accuracy than is possible with other methods.Results We used trio binning to assemble reference genomes for two species from a single individual using an interspecies cross of yak (Bos grunniens) and cattle (Bos taurus). The high heterozygosity inherent to interspecies hybrids allowed us to confidently assign >99% of long reads from the F1 offspring to parental bins using unique k-mers from parental short reads. Both the maternal (yak) and paternal (cattle) assemblies contain over one third of the acrocentric chromosomes, including the two largest chromosomes, in single haplotigs.Conclusions These haplotigs are the first vertebrate chromosome arms to be assembled gap-free and fully phased, and the first time assemblies for two species have been created from a single individual. Both assemblies are the most continuous currently available for non-model vertebrates.MbmegabaseskbkilobasesMYAmillions of years agoMHCmajor histocompatibility complexSMRTsingle molecule real time


April 21, 2020  |  

Plasmid-encoded tet(X) genes that confer high-level tigecycline resistance in Escherichia coli.

Tigecycline is one of the last-resort antibiotics to treat complicated infections caused by both multidrug-resistant Gram-negative and Gram-positive bacteria1. Tigecycline resistance has sporadically occurred in recent years, primarily due to chromosome-encoding mechanisms, such as overexpression of efflux pumps and ribosome protection2,3. Here, we report the emergence of the plasmid-mediated mobile tigecycline resistance mechanism Tet(X4) in Escherichia coli isolates from China, which is capable of degrading all tetracyclines, including tigecycline and the US FDA newly approved eravacycline. The tet(X4)-harbouring IncQ1 plasmid is highly transferable, and can be successfully mobilized and stabilized in recipient clinical and laboratory strains of Enterobacteriaceae bacteria. It is noteworthy that tet(X4)-positive E.?coli strains, including isolates co-harbouring mcr-1, have been widely detected in pigs, chickens, soil and dust samples in China. In vivo murine models demonstrated that the presence of Tet(X4) led to tigecycline treatment failure. Consequently, the emergence of plasmid-mediated Tet(X4) challenges the clinical efficacy of the entire family of tetracycline antibiotics. Importantly, our study raises concern that the plasmid-mediated tigecycline resistance may further spread into various ecological niches and into clinical high-risk pathogens. Collective efforts are in urgent need to preserve the potency of these essential antibiotics.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.