fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Comprehensive characterization of T-DNA integration induced chromosomal rearrangement in a birch T-DNA mutant.

Integration of T-DNA into plant genomes via Agrobacterium may interrupt gene structure and generate numerous mutants. The T-DNA caused mutants are valuable materials for understanding T-DNA integration model in plant research. T-DNA integration in plants is complex and still largely unknown. In this work, we reported that multiple T-DNA fragments caused chromosomal translocation and deletion in a birch (Betula platyphylla × B. pendula) T-DNA mutant yl.We performed PacBio genome resequencing for yl and the result revealed that two ends of a T-DNA can be integrated into plant genome independently because the two ends can be linked to different chromosomes and…

Read More »

Tuesday, April 21, 2020

Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp.

Diseases on Prunus spp. have been associated with a large number of phylogenetically different pathovars and species within the P. syringae species complex. Despite their economic significance, there is a severe lack of genomic information of these pathogens. The high phylogenetic diversity observed within strains causing disease on Prunus spp. in nature, raised the question whether other strains or species within the P. syringae species complex were potentially pathogenic on Prunus spp.To gain insight into the genomic potential of adaptation and virulence in Prunus spp., a total of twelve de novo whole genome sequences of P. syringae pathovars and species…

Read More »

Tuesday, April 21, 2020

Comparative Phylogenomics, a Stepping Stone for Bird Biodiversity Studies

Birds are a group with immense availability of genomic resources, and hundreds of forthcoming genomes at the doorstep. We review recent developments in whole genome sequencing, phylogenomics, and comparative genomics of birds. Short read based genome assemblies are common, largely due to efforts of the Bird 10K genome project (B10K). Chromosome-level assemblies are expected to increase due to improved long-read sequencing. The available genomic data has enabled the reconstruction of the bird tree of life with increasing confidence and resolution, but challenges remain in the early splits of Neoaves due to their explosive diversification after the Cretaceous-Paleogene (K-Pg) event. Continued…

Read More »

Tuesday, April 21, 2020

Comparative genomic and phylogenetic analyses of Populus section Leuce using complete chloroplast genome sequences

Species of Populus section Leuce are distributed throughout most parts of the Northern Hemisphere and have important economic and ecological significance. However, due to frequent hybridization within Leuce, the phylogenetic relationship between species has not been clarified. The chloroplast (cp) genome is characterized by maternal inheritance and relatively conservative mutation rates; thus, it is a powerful tool for building phylogenetic trees. In this study, we used the PacBio SEQUEL software to determine that the cp genome of Populus tomentosa has a length of 156,558 bp including a long single-copy region (84,717 bp), a small single-copy region (16,555 bp), and a…

Read More »

Tuesday, April 21, 2020

Comprehensive analysis of full genome sequence and Bd-milRNA/target mRNAs to discover the mechanism of hypovirulence in Botryosphaeria dothidea strains on pear infection with BdCV1 and BdPV1

Pear ring rot disease, mainly caused by Botryosphaeria dothidea, is widespread in most pear and apple-growing regions. Mycoviruses are used for biocontrol, especially in fruit tree disease. BdCV1 (Botryosphaeria dothidea chrysovirus 1) and BdPV1 (Botryosphaeria dothidea partitivirus 1) influence the biological characteristics of B. dothidea strains. BdCV1 is a potential candidate for the control of fungal disease. Therefore, it is vital to explore interactions between B. dothidea and mycovirus to clarify the pathogenic mechanisms of B. dothidea and hypovirulence of B. dothidea in pear. A high-quality full-length genome sequence of the B. dothidea LW-Hubei isolate was obtained using Single Molecule…

Read More »

1 2 3

Subscribe for blog updates:

Archives