Menu
June 1, 2021  |  

Complex alternative splicing patterns in hematopoietic cell subpopulations revealed by third-generation long reads.

Background: Alternative splicing expands the repertoire of gene functions and is a signature for different cell populations. Here we characterize the transcriptome of human bone marrow subpopulations including progenitor cells to understand their contribution to homeostasis and pathological conditions such as atherosclerosis and tumor metastasis. To obtain full-length transcript structures, we utilized long reads in addition to RNA-seq for estimating isoform diversity and abundance. Method: Freshly harvested, viable human bone marrow tissues were extracted from discarded harvesting equipment and separated into total bone marrow (total), lineage-negative (lin-) progenitor cells and differentiated cells (lin+) by magnetic bead sorting with antibodies to surface markers of hematopoietic cell lineages. Sequencing was done with SOLiD, Illumina HiSeq (100bp paired-end reads), and PacBio RS II (full-length cDNA library protocol for 1 – 6 kb libraries). Short reads were assembled using both Trinity for de novo assembly and Cufflinks for genome-guided assembly. Full-length transcript consensus sequences were obtained for the PacBio data using the RS_IsoSeq protocol from PacBios SMRTAnalysis software. Quantitation for each sample was done independently for each sequencing platform using Sailfish to obtain the TPM (transcripts per million) using k-mer matching. Results: PacBios long read sequencing technology is capable of sequencing full-length transcripts up to 10 kb and reveals heretofore-unseen isoform diversity and complexity within the hematopoietic cell populations. A comparison of sequencing depth and de novo transcript assembly with short read, second-generation sequencing reveals that, while short reads provide precision in determining portions of isoform structure and supporting larger 5 and 3 UTR regions, it fails in providing a complete structure especially when multiple isoforms are present at the same locus. Increased breadth of isoform complexity is revealed by long reads that permits further elaboration of full isoform diversity and specific isoform abundance within each separate cell population. Sorting the distribution of major and minor isoforms reveals a cell population-specific balance focused on distinct genome loci and shows how tissue specificity and diversity are modulated by alternative splicing.


June 1, 2021  |  

A comprehensive study of the sugar pine (Pinus lambertiana) transcriptome implemented through diverse next-generation sequencing approaches

The assembly, annotation, and characterization of the sugar pine (Pinus lambertiana Dougl.) transcriptome represents an opportunity to study the genetic mechanisms underlying resistance to the invasive white pine blister rust (Cronartium ribicola) as well as responses to other abiotic stresses. The assembled transcripts also provide a resource to improve the genome assembly. We selected a diverse set of tissues allowing the first comprehensive evaluation of the sugar pine gene space. We have combined short read sequencing technologies (Illumina MiSeq and HiSeq) with the relatively new Pacific Biosciences Iso-Seq approach. From the 2.5 billion and 1.6 million Illumina and PacBio (46 SMRT cells) reads, 33,720 unigenes were de novo assembled. Comparison of sequencing technologies revealed improved coverage with Illumina HiSeq reads and better splice variant detection with PacBio Iso-Seq reads. The genes identified as unique to each library ranges from 199 transcripts (basket seedling) to 3,482 transcripts (female cones). In total, 10,026 transcripts were shared by all libraries. Genes differentially expressed in response to these provided insight on abiotic and biotic stress responses. To analyze orthologous sequences, we compared the translated sequences against 19 plant species, identifying 7,229 transcripts that clustered uniquely among the conifers. We have generated here a high quality transcriptome from one WPBR susceptible and one WPBR resistant sugar pine individual. Through the comprehensive tissue sampling and the depth of the sequencing achieved, detailed information on disease resistance can be further examined.


April 21, 2020  |  

RNA sequencing: the teenage years.

Over the past decade, RNA sequencing (RNA-seq) has become an indispensable tool for transcriptome-wide analysis of differential gene expression and differential splicing of mRNAs. However, as next-generation sequencing technologies have developed, so too has RNA-seq. Now, RNA-seq methods are available for studying many different aspects of RNA biology, including single-cell gene expression, translation (the translatome) and RNA structure (the structurome). Exciting new applications are being explored, such as spatial transcriptomics (spatialomics). Together with new long-read and direct RNA-seq technologies and better computational tools for data analysis, innovations in RNA-seq are contributing to a fuller understanding of RNA biology, from questions such as when and where transcription occurs to the folding and intermolecular interactions that govern RNA function.


April 21, 2020  |  

Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp.

Shewanella baltica 128 is a specific spoilage organism (SSO) isolated from the refrigerated shrimp that results in shrimp spoilage. This study reported the complete genome sequencing of this strain, with the primary annotations associated with amino acid transport and metabolism (8.66%), indicating that S. baltica 128 has good potential for degrading proteins. In vitro experiments revealed Shewanella baltica 128 could adapt to the stress conditions by regulating its growth and biofilm formation. Genes that related to the spoilage-related metabolic pathways, including trimethylamine metabolism (torT), sulfur metabolism (cysM), putrescine metabolism (speC), biofilm formation (rpoS) and serine protease production (degS), were identified. Genes (LuxS, pfs, LuxR and qseC) that related to the specific QS system were also identified. Complete genome sequence of S. baltica 128 provide insights into the QS-related spoilage potential, which might provide novel information for the development of new approaches for spoilage detection and prevention based on QS target.Copyright © 2019. Published by Elsevier Inc.


April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits.

The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants. Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.


April 21, 2020  |  

The genomes of pecan and Chinese hickory provide insights into Carya evolution and nut nutrition.

Pecan (Carya illinoinensis) and Chinese hickory (C. cathayensis) are important commercially cultivated nut trees in the genus Carya (Juglandaceae), with high nutritional value and substantial health benefits.We obtained >187.22 and 178.87 gigabases of sequence, and ~288× and 248× genome coverage, to a pecan cultivar (“Pawnee”) and a domesticated Chinese hickory landrace (ZAFU-1), respectively. The total assembly size is 651.31 megabases (Mb) for pecan and 706.43 Mb for Chinese hickory. Two genome duplication events before the divergence from walnut were found in these species. Gene family analysis highlighted key genes in biotic and abiotic tolerance, oil, polyphenols, essential amino acids, and B vitamins. Further analyses of reduced-coverage genome sequences of 16 Carya and 2 Juglans species provide additional phylogenetic perspective on crop wild relatives.Cooperative characterization of these valuable resources provides a window to their evolutionary development and a valuable foundation for future crop improvement. © The Author(s) 2019. Published by Oxford University Press.


April 21, 2020  |  

Whole-genome sequence of the oriental lung fluke Paragonimus westermani.

Foodborne infections caused by lung flukes of the genus Paragonimus are a significant and widespread public health problem in tropical areas. Approximately 50 Paragonimus species have been reported to infect animals and humans, but Paragonimus westermani is responsible for the bulk of human disease. Despite their medical and economic importance, no genome sequence for any Paragonimus species is available.We sequenced and assembled the genome of P. westermani, which is among the largest of the known pathogen genomes with an estimated size of 1.1 Gb. A 922.8 Mb genome assembly was generated from Illumina and Pacific Biosciences (PacBio) sequence data, covering 84% of the estimated genome size. The genome has a high proportion (45%) of repeat-derived DNA, particularly of the long interspersed element and long terminal repeat subtypes, and the expansion of these elements may explain some of the large size. We predicted 12,852 protein coding genes, showing a high level of conservation with related trematode species. The majority of proteins (80%) had homologs in the human liver fluke Opisthorchis viverrini, with an average sequence identity of 64.1%. Assembly of the P. westermani mitochondrial genome from long PacBio reads resulted in a single high-quality circularized 20.6 kb contig. The contig harbored a 6.9 kb region of non-coding repetitive DNA comprised of three distinct repeat units. Our results suggest that the region is highly polymorphic in P. westermani, possibly even within single worm isolates.The generated assembly represents the first Paragonimus genome sequence and will facilitate future molecular studies of this important, but neglected, parasite group.


April 21, 2020  |  

De novo assembly of white poplar genome and genetic diversity of white poplar population in Irtysh River basin in China.

The white poplar (Populus alba) is widely distributed in Central Asia and Europe. There are natural populations of white poplar in Irtysh River basin in China. It also can be cultivated and grown well in northern China. In this study, we sequenced the genome of P. alba by single-molecule real-time technology. De novo assembly of P. alba had a genome size of 415.99 Mb with a contig N50 of 1.18 Mb. A total of 32,963 protein-coding genes were identified. 45.16% of the genome was annotated as repetitive elements. Genome evolution analysis revealed that divergence between P. alba and Populus trichocarpa (black cottonwood) occurred ~5.0 Mya (3.0, 7.1). Fourfold synonymous third-codon transversion (4DTV) and synonymous substitution rate (ks) distributions supported the occurrence of the salicoid WGD event (~ 65 Mya). Twelve natural populations of P. alba in the Irtysh River basin in China were sequenced to explore the genetic diversity. Average pooled heterozygosity value of P. alba populations was 0.170±0.014, which was lower than that in Italy (0.271±0.051) and Hungary (0.264±0.054). Tajima’s D values showed a negative distribution, which might signify an excess of low frequency polymorphisms and a bottleneck with later expansion of P. alba populations examined.


April 21, 2020  |  

The Genome of Cucurbita argyrosperma (Silver-Seed Gourd) Reveals Faster Rates of Protein-Coding Gene and Long Noncoding RNA Turnover and Neofunctionalization within Cucurbita.

Whole-genome duplications are an important source of evolutionary novelties that change the mode and tempo at which genetic elements evolve within a genome. The Cucurbita genus experienced a whole-genome duplication around 30 million years ago, although the evolutionary dynamics of the coding and noncoding genes in this genus have not yet been scrutinized. Here, we analyzed the genomes of four Cucurbita species, including a newly assembled genome of Cucurbita argyrosperma, and compared the gene contents of these species with those of five other members of the Cucurbitaceae family to assess the evolutionary dynamics of protein-coding and long intergenic noncoding RNA (lincRNA) genes after the genome duplication. We report that Cucurbita genomes have a higher protein-coding gene birth-death rate compared with the genomes of the other members of the Cucurbitaceae family. C. argyrosperma gene families associated with pollination and transmembrane transport had significantly faster evolutionary rates. lincRNA families showed high levels of gene turnover throughout the phylogeny, and 67.7% of the lincRNA families in Cucurbita showed evidence of birth from the neofunctionalization of previously existing protein-coding genes. Collectively, our results suggest that the whole-genome duplication in Cucurbita resulted in faster rates of gene family evolution through the neofunctionalization of duplicated genes. Copyright © 2019 The Author. Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

The red bayberry genome and genetic basis of sex determination.

Morella rubra, red bayberry, is an economically important fruit tree in south China. Here, we assembled the first high-quality genome for both a female and a male individual of red bayberry. The genome size was 313-Mb, and 90% sequences were assembled into eight pseudo chromosome molecules, with 32 493 predicted genes. By whole-genome comparison between the female and male and association analysis with sequences of bulked and individual DNA samples from female and male, a 59-Kb region determining female was identified and located on distal end of pseudochromosome 8, which contains abundant transposable element and seven putative genes, four of them are related to sex floral development. This 59-Kb female-specific region was likely to be derived from duplication and rearrangement of paralogous genes and retained non-recombinant in the female-specific region. Sex-specific molecular markers developed from candidate genes co-segregated with sex in a genetically diverse female and male germplasm. We propose sex determination follow the ZW model of female heterogamety. The genome sequence of red bayberry provides a valuable resource for plant sex chromosome evolution and also provides important insights for molecular biology, genetics and modern breeding in Myricaceae family. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF.

Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a “first of its kind”, comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses.The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant’s blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators.To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors.This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations.Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

Genomic investigation of Staphylococcus aureus recovered from Gambian women and newborns following an oral dose of intra-partum azithromycin.

Oral azithromycin given during labour reduces carriage of bacteria responsible for neonatal sepsis, including Staphylococcus aureus. However, there is concern that this may promote drug resistance.Here, we combine genomic and epidemiological data on S. aureus isolated from mothers and babies in a randomized intra-partum azithromycin trial (PregnAnZI) to describe bacterial population dynamics and resistance mechanisms.Participants from both arms of the trial, who carried S. aureus in day 3 and day 28 samples post-intervention, were included. Sixty-six S. aureus isolates (from 7 mothers and 10 babies) underwent comparative genome analyses and the data were then combined with epidemiological data. Trial registration (main trial): ClinicalTrials.gov Identifier NCT01800942.Seven S. aureus STs were identified, with ST5 dominant (n?=?40, 61.0%), followed by ST15 (n?=?11, 17.0%). ST5 predominated in the placebo arm (73.0% versus 49.0%, P?=?0.039) and ST15 in the azithromycin arm (27.0% versus 6.0%, P?=?0.022). In azithromycin-resistant isolates, msr(A) was the main macrolide resistance gene (n?=?36, 80%). Ten study participants, from both trial arms, acquired azithromycin-resistant S. aureus after initially harbouring a susceptible isolate. In nine (90%) of these cases, the acquired clone was an msr(A)-containing ST5 S. aureus. Long-read sequencing demonstrated that in ST5, msr(A) was found on an MDR plasmid.Our data reveal in this Gambian population the presence of a dominant clone of S. aureus harbouring plasmid-encoded azithromycin resistance, which was acquired by participants in both arms of the study. Understanding these resistance dynamics is crucial to defining the public health drug resistance impacts of azithromycin prophylaxis given during labour in Africa. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.


April 21, 2020  |  

Hybrid sequencing-based personal full-length transcriptomic analysis implicates proteostatic stress in metastatic ovarian cancer.

Comprehensive molecular characterization of myriad somatic alterations and aberrant gene expressions at personal level is key to precision cancer therapy, yet limited by current short-read sequencing technology, individualized catalog of complete genomic and transcriptomic features is thus far elusive. Here, we integrated second- and third-generation sequencing platforms to generate a multidimensional dataset on a patient affected by metastatic epithelial ovarian cancer. Whole-genome and hybrid transcriptome dissection captured global genetic and transcriptional variants at previously unparalleled resolution. Particularly, single-molecule mRNA sequencing identified a vast array of unannotated transcripts, novel long noncoding RNAs and gene chimeras, permitting accurate determination of transcription start, splice, polyadenylation and fusion sites. Phylogenetic and enrichment inference of isoform-level measurements implicated early functional divergence and cytosolic proteostatic stress in shaping ovarian tumorigenesis. A complementary imaging-based high-throughput drug screen was performed and subsequently validated, which consistently pinpointed proteasome inhibitors as an effective therapeutic regime by inducing protein aggregates in ovarian cancer cells. Therefore, our study suggests that clinical application of the emerging long-read full-length analysis for improving molecular diagnostics is feasible and informative. An in-depth understanding of the tumor transcriptome complexity allowed by leveraging the hybrid sequencing approach lays the basis to reveal novel and valid therapeutic vulnerabilities in advanced ovarian malignancies.


April 21, 2020  |  

PacBio full-length cDNA sequencing integrated with RNA-seq reads drastically improves the discovery of splicing transcripts in rice.

In eukaryotes, alternative splicing (AS) greatly expands the diversity of transcripts. However, it is challenging to accurately determine full-length splicing isoforms. Recently, more studies have taken advantage of Pacific Bioscience (PacBio) long-read sequencing to identify full-length transcripts. Nevertheless, the high error rate of PacBio reads seriously offsets the advantages of long reads, especially for accurately identifying splicing junctions. To best capitalize on the features of long reads, we used Illumina RNA-seq reads to improve PacBio circular consensus sequence (CCS) quality and to validate splicing patterns in the rice transcriptome. We evaluated the impact of CCS accuracy on the number and the validation rate of splicing isoforms, and integrated a comprehensive pipeline of splicing transcripts analysis by Iso-Seq and RNA-seq (STAIR) to identify the full-length multi-exon isoforms in rice seedling transcriptome (Oryza sativa L. ssp. japonica). STAIR discovered 11 733 full-length multi-exon isoforms, 6599 more than the SMRT Portal RS_IsoSeq pipeline did. Of these splicing isoforms identified, 4453 (37.9%) were missed in assembled transcripts from RNA-seq reads, and 5204 (44.4%), including 268 multi-exon long non-coding RNAs (lncRNAs), were not reported in the MSU_osa1r7 annotation. Some randomly selected unreported splicing junctions were verified by polymerase chain reaction (PCR) amplification. In addition, we investigated alternative polyadenylation (APA) events in transcripts and identified 829 major polyadenylation [poly(A)] site clusters (PACs). The analysis of splicing isoforms and APA events will facilitate the annotation of the rice genome and studies on the expression and polyadenylation of AS genes in different developmental stages or growth conditions of rice. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.