Menu
April 21, 2020  |  

A Highly Unusual V1 Region of Env in an Elite Controller of HIV Infection.

HIV elite controllers represent a remarkable minority of patients who maintain normal CD4+ T-cell counts and low or undetectable viral loads for decades in the absence of antiretroviral therapy. To examine the possible contribution of virus attenuation to elite control, we obtained a primary HIV-1 isolate from an elite controller who had been infected for 19?years, the last 10 of which were in the absence of antiretroviral therapy. Full-length sequencing of this isolate revealed a highly unusual V1 domain in Envelope (Env). The V1 domain in this HIV-1 strain was 49 amino acids, placing it in the top 1% of lengths among the 6,112 Env sequences in the Los Alamos National Laboratory online database. Furthermore, it included two additional N-glycosylation sites and a pair of cysteines suggestive of an extra disulfide loop. Virus with this Env retained good infectivity and replicative capacity; however, analysis of recombinant viruses suggested that other sequences in Env were adapted to accommodate the unusual V1 domain. While the long V1 domain did not confer resistance to neutralization by monoclonal antibodies of the V1/V2-glycan-dependent class, it did confer resistance to neutralization by monoclonal antibodies of the V3-glycan-dependent class. Our findings support results in the literature that suggest a role for long V1 regions in shielding HIV-1 from recognition by V3-directed broadly neutralizing antibodies. In the case of the elite controller described here, it seems likely that selective pressures from the humoral immune system were responsible for driving the highly unusual polymorphisms present in this HIV-1 Envelope.IMPORTANCE Elite controllers have long provided an avenue for researchers to reveal mechanisms underlying control of HIV-1. While the role of host genetic factors in facilitating elite control is well known, the possibility of infection by attenuated strains of HIV-1 has been much less studied. Here we describe an unusual viral feature found in an elite controller of HIV-1 infection and demonstrate its role in conferring escape from monoclonal antibodies of the V3-glycan class. Our results suggest that extreme variation may be needed by HIV-1 to escape neutralization by some antibody specificities. Copyright © 2019 Silver et al.


April 21, 2020  |  

Current advances in HIV vaccine preclinical studies using Macaque models.

The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model’s true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.Crown Copyright © 2019. Published by Elsevier Ltd. All rights reserved.


April 21, 2020  |  

Vaccine-induced protection from homologous tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers.

Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ~1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.


April 21, 2020  |  

Development of CRISPR-Cas systems for genome editing and beyond

The development of clustered regularly interspaced short-palindromic repeat (CRISPR)-Cas systems for genome editing has transformed the way life science research is conducted and holds enormous potential for the treatment of disease as well as for many aspects of biotech- nology. Here, I provide a personal perspective on the development of CRISPR-Cas9 for genome editing within the broader context of the field and discuss our work to discover novel Cas effectors and develop them into additional molecular tools. The initial demonstra- tion of Cas9-mediated genome editing launched the development of many other technologies, enabled new lines of biological inquiry, and motivated a deeper examination of natural CRISPR-Cas systems, including the discovery of new types of CRISPR-Cas systems. These new discoveries in turn spurred further technological developments. I review these exciting discoveries and technologies as well as provide an overview of the broad array of applications of these technologies in basic research and in the improvement of human health. It is clear that we are only just beginning to unravel the potential within microbial diversity, and it is quite likely that we will continue to discover other exciting phenomena, some of which it may be possible to repurpose as molecular technologies. The transformation of mysterious natural phenomena to powerful tools, however, takes a collective effort to discover, characterize, and engineer them, and it has been a privilege to join the numerous researchers who have contributed to this transformation of CRISPR-Cas systems.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.