April 21, 2020  |  

FadR1, a pathway-specific activator of fidaxomicin biosynthesis in Actinoplanes deccanensis Yp-1.

Fidaxomicin, an 18-membered macrolide antibiotic, is highly active against Clostridium difficile, the most common cause of diarrhea in hospitalized patients. Though the biosynthetic mechanism of fidaxomicin has been well studied, little is known about its regulatory mechanism. Here, we reported that FadR1, a LAL family transcriptional regulator in the fidaxomicin cluster of Actinoplanes deccanensis Yp-1, acts as an activator for fidaxomicin biosynthesis. The disruption of fadR1 abolished the ability to synthesize fidaxomicin, and production could be restored by reintegrating a single copy of fadR1. Overexpression of fadR1 resulted in an approximately 400 % improvement in fidaxomicin production. Electrophoretic mobility shift assays indicated that fidaxomicin biosynthesis is under the control of FadR1 through its binding to the promoter regions of fadM, fadA1-fadP2, fadS2-fadC, and fadE-fadF, respectively. And the conserved binding sites of FadR1 within the four promoter regions were determined by footprinting experiment. All results indicated that fadR1 encodes a pathway-specific positive regulator of fidaxomicin biosynthesis and upregulates the transcription levels of most of genes by binding to the four above intergenic regions. In summary, we not only clearly elucidate the regulatory mechanism of FadR1 but also provide strategies for the construction of industrial high-yield strain of fidaxomicin.


April 21, 2020  |  

The Isolation and Characterization of Kronos, a Novel Caulobacter Rhizosphere Phage that is Similar to Lambdoid Phages.

Despite their ubiquity, relatively few bacteriophages have been characterized. Here, we set out to explore Caulobacter bacteriophages (caulophages) in the rhizosphere and characterized Kronos, the first caulophage isolated from the rhizosphere. Kronos is a member of the Siphoviridae family since it has a long flexible tail. In addition, an analysis of the Kronos genome indicated that many of the predicted proteins were distantly related to those of bacteriophages in the lambdoid family. Consistent with this observation, we were able to demonstrate the presence of cos sites that are similar to those found at the ends of lambdoid phage genomes. Moreover, Kronos displayed a relatively rare head and tail morphology compared to other caulophages but was similar to that of the lambdoid phages. Taken together, these data indicate that Kronos is distantly related to lambdoid phages and may represent a new Siphoviridae genus.


April 21, 2020  |  

Analyses of four new Caulobacter Phicbkviruses indicate independent lineages.

Bacteriophages with genomes larger than 200 kbp are considered giant phages, and the giant Phicbkviruses are the most frequently isolated Caulobacter crescentus phages. In this study, we compare six bacteriophage genomes that differ from the genomes of the majority of Phicbkviruses. Four of these genomes are much larger than those of the rest of the Phicbkviruses, with genome sizes that are more than 250 kbp. A comparison of 16 Phicbkvirus genomes identified a ‘core genome’ of 69 genes that is present in all of these Phicbkvirus genomes, as well as shared accessory genes and genes that are unique for each phage. Most of the core genes are clustered into the regions coding for structural proteins or those involved in DNA replication. A phylogenetic analysis indicated that these 16 CaulobacterPhicbkvirus genomes are related, but they represent four distinct branches of the Phicbkvirus genomic tree with distantly related branches sharing little nucleotide homology. In contrast, pairwise comparisons within each branch of the phylogenetic tree showed that more than 80?% of the entire genome is shared among phages within a group. This conservation of the genomes within each branch indicates that horizontal gene transfer events between the groups are rare. Therefore, the Phicbkvirus genus consists of at least four different phylogenetic branches that are evolving independently from one another. One of these branches contains a 27-gene inversion relative to the other three branches. Also, an analysis of the tRNA genes showed that they are relatively mobile within the Phicbkvirus genus.


April 21, 2020  |  

Genome Comparisons of Wild Isolates of Caulobacter crescentus Reveal Rates of Inversion and Horizontal Gene Transfer.

Since previous interspecies comparisons of Caulobacter genomes have revealed extensive genome rearrangements, we decided to compare the nucleotide sequences of four C. crescentus genomes, NA1000, CB1, CB2, and CB13. To accomplish this goal, we used PacBio sequencing technology to determine the nucleotide sequence of the CB1, CB2, and CB13 genomes, and obtained each genome sequence as a single contig. To correct for possible sequencing errors, each genome was sequenced twice. The only differences we observed between the two sets of independently determined sequences were random omissions of a single base in a small percentage of the homopolymer regions where a single base is repeated multiple times. Comparisons of these four genomes indicated that horizontal gene transfer events that included small numbers of genes occurred at frequencies in the range of 10-3 to 10-4 insertions per generation. Large insertions were about 100 times less frequent. Also, in contrast to previous interspecies comparisons, we found no genome rearrangements when the closely related NA1000, CB1, and CB2 genomes were compared, and only eight inversions and one translocation when the more distantly related CB13 genome was compared to the other genomes. Thus, we estimate that inversions occur at a rate of one per 10 to 12 million generations in Caulobacter genomes. The inversions seem to be complex events that include the simultaneous creation of indels.


April 21, 2020  |  

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.