Menu
April 21, 2020  |  

Characterization of a novel, type II staphylococcal cassette chromosome mec element from an endemic oxacillin-resistant Staphylococcus lugdunensis clone in a hospital setting.

Staphylococcus lugdunensis is a significant pathogen that causes community-acquired and nosocomial infections. The high prevalence of oxacillin-resistant S. lugdunensis (ORSL) is of major concern. Resistance to ß-lactams is caused by acquisition of the staphylococcal cassette chromosome mec (SCCmec) element. The cassette is highly diverse, both structurally and genetically, among CoNS. Isolates carrying SCCmec II-ST6 are the major persistent clones in hospitals.To investigate the structure and evolutionary origin of a novel type II SCCmec element in an endemic ST6 S. lugdunensis clone.The structure of the SCCmec II element carried by ST6 strain CGMH-SL118 was determined by WGS and compared with those reported previously.A novel 39 kb SCCmec element, SCCmecCGMH-SL118, with a unique mosaic structure comprising 41 ORFs integrated into the 3′ end of the rlmH gene, was observed. Some regions of SCCmecCGMH-SL118 were homologous to SCCmec IIa of the prototype MRSA strain N315. The structure of SCCmecCGMH-SL118 was similar to that of SCCmec IIb of the MRSA strain, JCSC3063, mainly lacking the aminoglycoside resistance determinant pUB110 in the J3 region but containing the insertion sequence IS256 in the J2 region. Notably, SCCmecCGMH-SL118 deletions in the J1 region compared with SCCmec types IIa and IIb, and a high homology to SCCmec elements of Staphylococcus aureus JCSC4610 and Staphylococcus haemolyticus strain 621 were found.The genetic diversity of the type II SCCmec element in ORSL suggests that CoNS is a potential reservoir for interspecies transfer of SCCmec to S. aureus in hospitals. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Methicillin-Resistant Staphylococcus aureus Blood Isolates Harboring a Novel Pseudo-staphylococcal Cassette Chromosome mec Element.

The aim of this work was to assess a novel pseudo-staphylococcal cassette chromosome mec (?SCCmec) element in methicillin-resistant Staphylococcus aureus (MRSA) blood isolates. Community-associated MRSA E16SA093 and healthcare-associated MRSA F17SA003 isolates were recovered from the blood specimens of patients with S. aureus bacteremia in 2016 and in 2017, respectively. Antimicrobial susceptibility was determined via the disk diffusion method, and SCCmec typing was conducted by multiplex polymerase chain reaction. Whole genome sequencing was carried out by single molecule real-time long-read sequencing. Both isolates belonged to sequence type 72 and agr-type I, and they were negative for Panton-Valentine leukocidin and toxic shock syndrome toxin. The spa-types of E16SA093 and F17SA003 were t324 and t2460, respectively. They had a SCCmec IV-like element devoid of the cassette chromosome recombinase (ccr) gene complex, designated as ?SCCmecE16SA093. The element was manufactured from SCCmec type IV and the deletion of the ccr gene complex and a 7.0- and 31.9-kb portion of each chromosome. The deficiency of the ccr gene complex in the SCCmec unit is likely resulting in mobility loss, which would be an adaptive evolutionary mechanism. The dissemination of this clone should be monitored closely.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.