June 1, 2021  |  

Single Molecule Real-Time (SMRT) Sequencing of genes implicated in autosomal recessive diseases.

In today’s clinical diagnostic laboratories, the detection of the disease causing mutations is either done through genotyping or Sanger sequencing. Whether done singly or in a multiplex assay, genotyping works only if the exact molecular change is known. Sanger sequencing is the gold standard method that captures both known and novel molecular changes in the disease gene of interest. Most clinical Sanger sequencing assays involve PCR-amplifying the coding sequences of the disease target gene followed by bi-directional sequencing of the amplified products. Therefore for every patient sample, one generates multiple amplicons singly and each amplicon leads to two separate sequencing reactions. Single Molecule, Real-Time (SMRT) sequencing offers several advantages to Sanger sequencing including long read lengths, first-in-first-out processing, fast time to result, high-levels of multiplexing and substantially reduced costs. For our first proof-of-concept experiment, we queried 3 known disease-associated mutations in de-identified clinical samples. We started off with 3 autosomal recessive diseases found at an increased frequency in the Ashkenazi Jewish population: Tay Sachs disease, Niemann-Pick disease and Canavan disease. The mutated gene in Tays Sachs is HEXA, Niemann-Pick is SMPD1 and Canavan is ASPA. Coding exons were amplified in multiple (6-13) amplicons for each gene from both non-carrier and carriers. Amplicons were purified, concentrations normalized, and combined prior to SMRTbell™ Library prep. A single SMRTbell library was sequenced for each gene from each patient using standard Pacific Biosciences C2 chemistry and protocols. Average read lengths of 4,000 bp across samples allowed for high-quality Circular Consensus Sequences (CCS) across all amplicons (all less than 1 kb). This high quality CCS data permitted the clean partitioning of reads from a patient in the presence of heterozygous events. Using non-carrier sequencing as a control, we were able to correctly identify the known events in carrier genes. This suggests the potential utility of SMRT sequencing in a clinical setting, enabling a cost-effective method of replacing targeted mutation detection with sequencing of the entire gene.


April 21, 2020  |  

Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.

Current diagnostic testing for genetic disorders involves serial use of specialized assays spanning multiple technologies. In principle, genome sequencing (GS) can detect all genomic pathogenic variant types on a single platform. Here we evaluate copy-number variant (CNV) calling as part of a clinically accredited GS test.We performed analytical validation of CNV calling on 17 reference samples, compared the sensitivity of GS-based variants with those from a clinical microarray, and set a bound on precision using orthogonal technologies. We developed a protocol for family-based analysis of GS-based CNV calls, and deployed this across a clinical cohort of 79 rare and undiagnosed cases.We found that CNV calls from GS are at least as sensitive as those from microarrays, while only creating a modest increase in the number of variants interpreted (~10 CNVs per case). We identified clinically significant CNVs in 15% of the first 79 cases analyzed, all of which were confirmed by an orthogonal approach. The pipeline also enabled discovery of a uniparental disomy (UPD) and a 50% mosaic trisomy 14. Directed analysis of select CNVs enabled breakpoint level resolution of genomic rearrangements and phasing of de novo CNVs.Robust identification of CNVs by GS is possible within a clinical testing environment.


September 22, 2019  |  

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT sequencing is revolutionizing constitutional, reproductive, cancer, microbial and viral genetic testing.© The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.