April 21, 2020  |  

Integrating multiple genomic technologies to investigate an outbreak of carbapenemase-producing Enterobacter hormaechei

Carbapenem-resistant Enterobacteriaceae (CRE) represent one of the most urgent threats to human health posed by antibiotic resistant bacteria. Enterobacter hormaechei and other members of the Enterobacter cloacae complex are the most commonly encountered Enterobacter spp. within clinical settings, responsible for numerous outbreaks and ultimately poorer patient outcomes. Here we applied three complementary whole genome sequencing (WGS) technologies to characterise a hospital cluster of blaIMP-4 carbapenemase-producing E. hormaechei.In response to a suspected CRE outbreak in 2015 within an Intensive Care Unit (ICU)/Burns Unit in a Brisbane tertiary referral hospital we used Illumina sequencing to determine that all outbreak isolates were sequence type (ST)90 and near-identical at the core genome level. Comparison to publicly available data unequivocally linked all 10 isolates to a 2013 isolate from the same ward, confirming the hospital environment as the most likely original source of infection in the 2015 cases. No clonal relationship was found to IMP-4-producing isolates identified from other local hospitals. However, using Pacific Biosciences long-read sequencing we were able to resolve the complete context of the blaIMP-4 gene, which was found to be on a large IncHI2 plasmid carried by all IMP-4-producing isolates. Continued surveillance of the hospital environment was carried out using Oxford Nanopore long-read sequencing, which was able to rapidly resolve the true relationship of subsequent isolates to the initial outbreak. Shotgun metagenomic sequencing of environmental samples also found evidence of ST90 E. hormaechei and the IncHI2 plasmid within the hospital plumbing.Overall, our strategic application of three WGS technologies provided an in-depth analysis of the outbreak, including the transmission dynamics of a carbapenemase-producing E. hormaechei cluster, identification of possible hospital reservoirs and the full context of blaIMP-4 on a multidrug resistant IncHI2 plasmid that appears to be widely distributed in Australia.


April 21, 2020  |  

The blaNDM-1-Carrying IncA/C2 Plasmid Underlies Structural Alterations and Cointegrate Formation In Vivo.

In 2012, a carbapenemase-producing Salmonella enterica serovar Corvallis isolate carrying a blaNDM-1 multiresistance IncA/C2 plasmid, apart from IncHI2 and ColE-like plasmids, was detected in a wild bird in Germany. In a recent broiler chicken infection study, we observed transfer of this blaNDM-1-carrying IncA/C2 plasmid to other Enterobacteriaceae Here, we focused on the stability of this plasmid and gained insight into the type and frequency of its structural alterations after an in vivo passage in a broiler chicken infection study.Copyright © 2019 Hadziabdic et al.


April 21, 2020  |  

Conjugal Transfer, Whole-Genome Sequencing, and Plasmid Analysis of Four mcr-1-Bearing Isolates from U.S. Patients.

Four Enterobacteriaceae clinical isolates bearing mcr-1 gene-harboring plasmids were characterized. All isolates demonstrated the ability to transfer colistin resistance to Escherichia coli; plasmids were stable in conjugants after multiple passages on nonselective media. mcr-1 was located on an IncX4 (n?=?3) or IncN (n?=?1) plasmid. The IncN plasmid harbored 13 additional antimicrobial resistance genes. Results indicate that the mcr-1-bearing plasmids in this study were highly transferable in vitro and stable in the recipients.This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.


April 21, 2020  |  

Detection of VIM-1-Producing Enterobacter cloacae and Salmonella enterica Serovars Infantis and Goldcoast at a Breeding Pig Farm in Germany in 2017 and Their Molecular Relationship to Former VIM-1-Producing S. Infantis Isolates in German Livestock Production.

In 2011, VIM-1-producing Salmonella enterica serovar Infantis and Escherichia coli were isolated for the first time in four German livestock farms. In 2015/2016, highly related isolates were identified in German pig production. This raised the issue of potential reservoirs for these isolates, the relation of their mobile genetic elements, and potential links between the different affected farms/facilities. In a piglet-producing farm suspicious for being linked to some blaVIM-1 findings in Germany, fecal and environmental samples were examined for the presence of carbapenemase-producing Enterobacteriaceae and Salmonella spp. Newly discovered isolates were subjected to Illumina whole-genome sequencing (WGS) and S1 pulsed-field gel electrophoresis (PFGE) hybridization experiments. WGS data of these isolates were compared with those for the previously isolated VIM-1-producing Salmonella Infantis isolates from pigs and poultry. Among 103 samples, one Salmonella Goldcoast isolate, one Salmonella Infantis isolate, and one Enterobacter cloacae isolate carrying the blaVIM-1 gene were detected. Comparative WGS analysis revealed that the blaVIM-1 gene was part of a particular Tn21-like transposable element in all isolates. It was located on IncHI2 (ST1) plasmids of ~290 to 300?kb with a backbone highly similar (98 to 100%) to that of reference pSE15-SA01028. SNP analysis revealed a close relationship of all VIM-1-positive S Infantis isolates described since 2011. The findings of this study demonstrate that the occurrence of the blaVIM-1 gene in German livestock is restricted neither to a certain bacterial species nor to a certain Salmonella serovar but is linked to a particular Tn21-like transposable element located on transferable pSE15-SA01028-like IncHI2 (ST1) plasmids, being present in all of the investigated isolates from 2011 to 2017.IMPORTANCE Carbapenems are considered one of few remaining treatment options against multidrug-resistant Gram-negative pathogens in human clinical settings. The occurrence of carbapenemase-producing Enterobacteriaceae in livestock and food is a major public health concern. Particularly the occurrence of VIM-1-producing Salmonella Infantis in livestock farms is worrisome, as this zoonotic pathogen is one of the main causes for human salmonellosis in Europe. Investigations on the epidemiology of those carbapenemase-producing isolates and associated mobile genetic elements through an in-depth molecular characterization are indispensable to understand the transmission of carbapenemase-producing Enterobacteriaceae along the food chain and between different populations to develop strategies to prevent their further spread.Copyright © 2019 Roschanski et al.


April 21, 2020  |  

Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan.

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3 isolated from hospital wastewater in the United States, A. hydrophila WCHAH045096 isolated from sewage in China, other clinical isolates (Klebsiella, Enterobacter and Escherichia coli), and wastewater isolates (Citrobacter, Pseudomonas and other Aeromonas spp.). In addition to blaKPC-2 , pGSH8M-1-2 carries an IS26-mediated composite transposon including a macrolide resistance gene, mph(A). Although Aeromonas species are opportunistic pathogens, they could serve as potential environmental reservoir bacteria for carbapenemase and AMR genes. AMR monitoring from WWTP effluents will contribute to the detection of ongoing AMR dissemination in the environment and might provide an early warning of potential dissemination in clinical settings and communities. © 2019 The Authors. Environmental Microbiology Reports published by Society for Applied Microbiology and John Wiley & Sons Ltd.


April 21, 2020  |  

Dissemination of multiple carbapenem resistance genes in an in vitro gut model simulating the human colon.

Carbapenemase-producing Enterobacteriaceae (CPE) pose a major global health risk. Mobile genetic elements account for much of the increasing CPE burden.To investigate CPE colonization and the impact of antibiotic exposure on subsequent resistance gene dissemination within the gut microbiota using a model to simulate the human colon.Gut models seeded with CPE-negative human faeces [screened with BioMérieux chromID® CARBA-SMART (Carba-Smart), Cepheid Xpert® Carba-R assay (XCR)] were inoculated with distinct carbapenemase-producing Klebsiella pneumoniae strains (KPC, NDM) and challenged with imipenem or piperacillin/tazobactam then meropenem. Resistant populations were enumerated daily on selective agars (Carba-Smart); CPE genes were confirmed by PCR (XCR, Check-Direct CPE Screen for BD MAX™). CPE gene dissemination was tracked using PacBio long-read sequencing.CPE populations increased during inoculation, plateauing at ~105?log10?cfu/mL in both models and persisting throughout the experiments (>65?days), with no evidence of CPE ‘washout’. After antibiotic administration, there was evidence of interspecies plasmid transfer of blaKPC-2 (111742?bp IncFII/IncR plasmid, 99% identity to pKpQIL-D2) and blaNDM-1 (~170?kb IncFIB/IncFII plasmid), and CPE populations rose from <0.01% to >45% of the total lactose-fermenting populations in the KPC model. Isolation of a blaNDM-1K. pneumoniae with one chromosomal single-nucleotide variant compared with the inoculated strain indicated clonal expansion within the model. Antibiotic administration exposed a previously undetected K. pneumoniae encoding blaOXA-232 (KPC model).CPE exposure can lead to colonization, clonal expansion and resistance gene transfer within intact human colonic microbiota. Furthermore, under antibiotic selective pressure, new resistant populations emerge, emphasizing the need to control exposure to antimicrobials. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Deciphering bacterial epigenomes using modern sequencing technologies.

Prokaryotic DNA contains three types of methylation: N6-methyladenine, N4-methylcytosine and 5-methylcytosine. The lack of tools to analyse the frequency and distribution of methylated residues in bacterial genomes has prevented a full understanding of their functions. Now, advances in DNA sequencing technology, including single-molecule, real-time sequencing and nanopore-based sequencing, have provided new opportunities for systematic detection of all three forms of methylated DNA at a genome-wide scale and offer unprecedented opportunities for achieving a more complete understanding of bacterial epigenomes. Indeed, as the number of mapped bacterial methylomes approaches 2,000, increasing evidence supports roles for methylation in regulation of gene expression, virulence and pathogen-host interactions.


April 21, 2020  |  

Development of Tigecycline Resistance in Carbapenemase-Producing Klebsiella pneumoniae Sequence Type 147 via AcrAB Overproduction Mediated by Replacement of the ramA Promoter.

Carbapenem-resistant K. pneumoniae 2297, isolated from a patient treated with tigecycline for pneumonia, developed tigecycline resistance, in contrast to carbapenem-resistant isolate 1215, which was collected four months prior to the 2297 isolate. Mechanisms underlying tigecycline resistance were elucidated for the clinical isolates.The tigecycline minimum inhibitory concentration (MIC) was determined using the broth microdilution method, with or without phenylalanine-arginine ß-naphthylamide (PABN), and whole-genome sequencing was carried out by single-molecule real-time sequencing. The expression levels of the genes acrA, oqxA, ramA, rarA, and rpoB were determined by reverse-transcription quantitative PCR.Both isolates presented identical antibiograms, except for tigecycline, which showed an MIC of 0.5 mg/L in 1215 and 2 mg/L in 2297. The addition of PABN to tigecycline-resistant 2297 caused a four-fold decrease in the tigecycline MIC to 0.5 mg/L, although acrA expression (encoding the AcrAB efflux pump) was upregulated by 2.5 fold and ramA expression (encoding the pump activator RamA) was upregulated by 1.4 fold. We identified a 6,096-bp fragment insertion flanking direct TATAT repeats that disrupted the romA gene located upstream of ramA in the chromosome of K. pneumoniae 2297; the insertion led the ramA gene promoter replacement resulting in stronger activation of the gene.The K. pneumoniae isolate developed tigecycline resistance during tigecycline treatment. It was related to the overexpression of the AcrAB resistance-nodulation-cell division efflux system due to promoter replacement. © The Korean Society for Laboratory Medicine.


April 21, 2020  |  

Carbapenem-Resistant Pseudomonas aeruginosa at US Emerging Infections Program Sites, 2015.

Pseudomonas aeruginosa is intrinsically resistant to many antimicrobial drugs, making carbapenems crucial in clinical management. During July-October 2015 in the United States, we piloted laboratory-based surveillance for carbapenem-resistant P. aeruginosa (CRPA) at sentinel facilities in Georgia, New Mexico, Oregon, and Tennessee, and population-based surveillance in Monroe County, NY. An incident case was the first P. aeruginosa isolate resistant to antipseudomonal carbapenems from a patient in a 30-day period from any source except the nares, rectum or perirectal area, or feces. We found 294 incident cases among 274 patients. Cases were most commonly identified from respiratory sites (120/294; 40.8%) and urine (111/294; 37.8%); most (223/280; 79.6%) occurred in patients with healthcare facility inpatient stays in the prior year. Genes encoding carbapenemases were identified in 3 (2.3%) of 129 isolates tested. The burden of CRPA was high at facilities under surveillance, but carbapenemase-producing CRPA were rare.


April 21, 2020  |  

Whole genome assembly and functional portrait of hypervirulent extensively drug-resistant NDM-1 and KPC-2 co-producing Klebsiella pneumoniae of capsular serotype K2 and ST86.

To characterize an emergent carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) strain, NUHL30457, which co-produces NDM-1 and KPC-2 carbapenemases.We performed WGS analysis on a clinical carbapenemase-producing hypervirulent K. pneumoniae (CP-hvKP) strain NUHL30457. Sequence data were analysed using comparative genomics and phylogenetics. WGS was used to perform MLST, capsular genotyping and identification of virulence and antimicrobial resistance genes. The virulence of NUHL30457 was analysed by serum killing assay, neutrophil phagocytosis and mouse lethality assay.The NUHL30457 strain was carbapenem resistant and belonged to ST86 and serotype K2. A significant increase in resistance to serum killing and antiphagocytosis was found in the NUHL30457 strain compared with the reference strain. The murine lethality assay showed an LD50 of 2.5?×?102?cfu for the NUHL30457 strain, indicating hypervirulence. WGS revealed that NUHL30457 has a single 5.3?Mb chromosome (57.53% G?+?C content) and four plasmids in the range 49.2-215.7?kb. The incompatibility group (Inc)N plasmid p30457-4 carried the blaNDM-1 and qnrS1 genes. The IncFII(K) plasmid p30457-3 also carried an array of resistance elements, including blaCTX-M-65, blaTEM-1 and blaKPC-2. The IncHI1/IncFIB plasmid p30457-1, which carried virulence genes, was identical to a pLVPK plasmid reported previously.To the best of our knowledge, this is the first report to isolate an ST86 hvKP strain that co-produces NDM-1 and KPC-2 carbapenemase. Further investigation is required to reinforce our understanding of the epidemiology and virulence mechanisms of this clinically significant CP-hvKP. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.