Menu
April 21, 2020  |  

The CF Canada-Sick Kids Program in individual CF therapy: A resource for the advancement of personalized medicine in CF.

Therapies targeting certain CFTR mutants have been approved, yet variations in clinical response highlight the need for in-vitro and genetic tools that predict patient-specific clinical outcomes. Toward this goal, the CF Canada-Sick Kids Program in Individual CF Therapy (CFIT) is generating a “first of its kind”, comprehensive resource containing patient-specific cell cultures and data from 100 CF individuals that will enable modeling of therapeutic responses.The CFIT program is generating: 1) nasal cells from drug naïve patients suitable for culture and the study of drug responses in vitro, 2) matched gene expression data obtained by sequencing the RNA from the primary nasal tissue, 3) whole genome sequencing of blood derived DNA from each of the 100 participants, 4) induced pluripotent stem cells (iPSCs) generated from each participant’s blood sample, 5) CRISPR-edited isogenic control iPSC lines and 6) prospective clinical data from patients treated with CF modulators.To date, we have recruited 57 of 100 individuals to CFIT, most of whom are homozygous for F508del (to assess in-vitro: in-vivo correlations with respect to ORKAMBI response) or heterozygous for F508del and a minimal function mutation. In addition, several donors are homozygous for rare nonsense and missense mutations. Nasal epithelial cell cultures and matched iPSC lines are available for many of these donors.This accessible resource will enable development of tools that predict individual outcomes to current and emerging modulators targeting F508del-CFTR and facilitate therapy discovery for rare CF causing mutations.Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

One Aeromonas salmonicida subsp. salmonicida isolate with a pAsa5 variant bearing antibiotic resistance and a pRAS3 variant making a link with a swine pathogen.

The Gram-negative bacterium Aeromonas salmonicida subsp. salmonicida is an aquatic pathogen which causes furunculosis to salmonids, especially in fish farms. The emergence of strains of this bacterium exhibiting antibiotic resistance is increasing, limiting the effectiveness of antibiotherapy as a treatment against this worldwide disease. In the present study, we discovered an isolate of A. salmonicida subsp. salmonicida that harbors two novel plasmids variants carrying antibiotic resistance genes. The use of long-read sequencing (PacBio) allowed us to fully characterize those variants, named pAsa5-3432 and pRAS3-3432, which both differ from their classic counterpart through their content in mobile genetic elements. The plasmid pAsa5-3432 carries a new multidrug region composed of multiple mobile genetic elements, including a Class 1 integron similar to an integrated element of Salmonella enterica. With this new region, probably acquired through plasmid recombination, pAsa5-3432 is the first reported plasmid of this bacterium that bears both an essential virulence factor (the type three secretion system) and multiple antibiotic resistance genes. As for pRAS3-3432, compared to the classic pRAS3, it carries a new mobile element that has only been identified in Chlamydia suis. Hence, with the identification of those two novel plasmids harboring mobile genetic elements that are normally encountered in other bacterial species, the present study puts emphasis on the important impact of mobile genetic elements in the genomic plasticity of A. salmonicida subsp. salmonicida and suggests that this aquatic bacterium could be an important reservoir of antibiotic resistance genes that can be exchanged with other bacteria, including human and animal pathogens. Copyright © 2019 Elsevier B.V. All rights reserved.


April 21, 2020  |  

Alternative Splicing of the Delta-Opioid Receptor Gene Suggests Existence of New Functional Isoforms.

The delta-opioid receptor (DOPr) participates in mediating the effects of opioid analgesics. However, no selective agonists have entered clinical care despite potential to ameliorate many neurological and psychiatric disorders. In an effort to address the drug development challenges, the functional contribution of receptor isoforms created by alternative splicing of the three-exonic coding gene, OPRD1, has been overlooked. We report that the gene is transcriptionally more diverse than previously demonstrated, producing novel protein isoforms in humans and mice. We provide support for the functional relevance of splice variants through context-dependent expression profiling (tissues, disease model) and conservation of the transcriptional landscape in closely related vertebrates. The conserved alternative transcriptional events have two distinct patterns. First, cassette exon inclusions between exons 1 and 2 interrupt the reading frame, producing truncated receptor fragments comprising only the first transmembrane (TM) domain, despite the lack of exact exon orthologues between distant species. Second, a novel promoter and transcriptional start site upstream of exon 2 produces a transcript of an N-terminally truncated 6TM isoform. However, a fundamental difference in the exonic landscaping as well as translation and translation products poses limits for modelling the human DOPr receptor system in mice.


April 21, 2020  |  

Multiple modes of convergent adaptation in the spread of glyphosate-resistant Amaranthus tuberculatus.

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.Copyright © 2019 the Author(s). Published by PNAS.


April 21, 2020  |  

The developmental dynamics of the Populus stem transcriptome.

The Populus shoot undergoes primary growth (longitudinal growth) followed by secondary growth (radial growth), which produces biomass that is an important source of energy worldwide. We adopted joint PacBio Iso-Seq and RNA-seq analysis to identify differentially expressed transcripts along a developmental gradient from the shoot apex to the fifth internode of Populus Nanlin895. We obtained 87 150 full-length transcripts, including 2081 new isoforms and 62 058 new alternatively spliced isoforms, most of which were produced by intron retention, that were used to update the Populus annotation. Among these novel isoforms, there are 1187 long non-coding RNAs and 356 fusion genes. Using this annotation, we found 15 838 differentially expressed transcripts along the shoot developmental gradient, of which 1216 were transcription factors (TFs). Only a few of these genes were reported previously. The differential expression of these TFs suggests that they may play important roles in primary and secondary growth. AP2, ARF, YABBY and GRF TFs are highly expressed in the apex, whereas NAC, bZIP, PLATZ and HSF TFs are likely to be important for secondary growth. Overall, our findings provide evidence that long-read sequencing can complement short-read sequencing for cataloguing and quantifying eukaryotic transcripts and increase our understanding of the vital and dynamic process of shoot development. © 2018 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.


April 21, 2020  |  

A physical and genetic map of Cannabis sativa identifies extensive rearrangements at the THC/CBD acid synthase loci.

Cannabis sativa is widely cultivated for medicinal, food, industrial, and recreational use, but much remains unknown regarding its genetics, including the molecular determinants of cannabinoid content. Here, we describe a combined physical and genetic map derived from a cross between the drug-type strain Purple Kush and the hemp variety “Finola.” The map reveals that cannabinoid biosynthesis genes are generally unlinked but that aromatic prenyltransferase (AP), which produces the substrate for THCA and CBDA synthases (THCAS and CBDAS), is tightly linked to a known marker for total cannabinoid content. We further identify the gene encoding CBCA synthase (CBCAS) and characterize its catalytic activity, providing insight into how cannabinoid diversity arises in cannabis. THCAS and CBDAS (which determine the drug vs. hemp chemotype) are contained within large (>250 kb) retrotransposon-rich regions that are highly nonhomologous between drug- and hemp-type alleles and are furthermore embedded within ~40 Mb of minimally recombining repetitive DNA. The chromosome structures are similar to those in grains such as wheat, with recombination focused in gene-rich, repeat-depleted regions near chromosome ends. The physical and genetic map should facilitate further dissection of genetic and molecular mechanisms in this commercially and medically important plant. © 2019 Laverty et al.; Published by Cold Spring Harbor Laboratory Press.


April 21, 2020  |  

Analysis of the Complete Genome Sequence of a Novel, Pseudorabies Virus Strain Isolated in Southeast Europe.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease giving rise to significant economic losses worldwide. Many countries have implemented national programs for the eradication of this virus. In this study, long-read sequencing was used to determine the nucleotide sequence of the genome of a novel PRV strain (PRV-MdBio) isolated in Serbia.In this study, a novel PRV strain was isolated and characterized. PRV-MdBio was found to exhibit similar growth properties to those of another wild-type PRV, the strain Kaplan. Single-molecule real-time (SMRT) sequencing has revealed that the new strain differs significantly in base composition even from strain Kaplan, to which it otherwise exhibits the highest similarity. We compared the genetic composition of PRV-MdBio to strain Kaplan and the China reference strain Ea and obtained that radical base replacements were the most common point mutations preceding conservative and silent mutations. We also found that the adaptation of PRV to cell culture does not lead to any tendentious genetic alteration in the viral genome.PRV-MdBio is a wild-type virus, which differs in base composition from other PRV strains to a relatively large extent.


April 21, 2020  |  

Strain-level metagenomic assignment and compositional estimation for long reads with MetaMaps.

Metagenomic sequence classification should be fast, accurate and information-rich. Emerging long-read sequencing technologies promise to improve the balance between these factors but most existing methods were designed for short reads. MetaMaps is a new method, specifically developed for long reads, capable of mapping a long-read metagenome to a comprehensive RefSeq database with >12,000 genomes in <16?GB or RAM on a laptop computer. Integrating approximate mapping with probabilistic scoring and EM-based estimation of sample composition, MetaMaps achieves >94% accuracy for species-level read assignment and r2?>?0.97 for the estimation of sample composition on both simulated and real data when the sample genomes or close relatives are present in the classification database. To address novel species and genera, which are comparatively harder to predict, MetaMaps outputs mapping locations and qualities for all classified reads, enabling functional studies (e.g. gene presence/absence) and detection of incongruities between sample and reference genomes.


April 21, 2020  |  

Closing the Yield Gap for Cannabis: A Meta-Analysis of Factors Determining Cannabis Yield.

Until recently, the commercial production of Cannabis sativa was restricted to varieties that yielded high-quality fiber while producing low levels of the psychoactive cannabinoid tetrahydrocannabinol (THC). In the last few years, a number of jurisdictions have legalized the production of medical and/or recreational cannabis with higher levels of THC, and other jurisdictions seem poised to follow suit. Consequently, demand for industrial-scale production of high yield cannabis with consistent cannabinoid profiles is expected to increase. In this paper we highlight that currently, projected annual production of cannabis is based largely on facility size, not yield per square meter. This meta-analysis of cannabis yields reported in scientific literature aimed to identify the main factors contributing to cannabis yield per plant, per square meter, and per W of lighting electricity. In line with previous research we found that variety, plant density, light intensity and fertilization influence cannabis yield and cannabinoid content; we also identified pot size, light type and duration of the flowering period as predictors of yield and THC accumulation. We provide insight into the critical role of light intensity, quality, and photoperiod in determining cannabis yields, with particular focus on the potential for light-emitting diodes (LEDs) to improve growth and reduce energy requirements. We propose that the vast amount of genomics data currently available for cannabis can be used to better understand the effect of genotype on yield. Finally, we describe diversification that is likely to emerge in cannabis growing systems and examine the potential role of plant-growth promoting rhizobacteria (PGPR) for growth promotion, regulation of cannabinoid biosynthesis, and biocontrol.


April 21, 2020  |  

Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7.

Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains.The chromosome of NADC 6564 contained 5466?kb compared to reference strains Sakai (5498?kb) and EDL933 (5547?kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb?IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32-33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb?IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains.These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors.


April 21, 2020  |  

Characterization of an NDM-5 carbapenemase-producing Escherichia coli ST156 isolate from a poultry farm in Zhejiang, China.

The emergence of carbapenem-resistant Enterobacteriaceae strains has posed a severe threat to public health in recent years. The mobile elements carrying the New Delhi metallo-ß-lactqtamase (NDM) gene have been regarded as the major mechanism leading to the rapid increase of carbapenem-resistant Enterobacteriaceae strains isolated from clinics and animals.We describe an NDM-5-producing Escherichia coli strain, ECCRA-119 (sequence type 156 [ST156]), isolated from a poultry farm in Zhejiang, China. ECCRA-119 is a multidrug-resistant (MDR) isolate that exhibited resistance to 27 antimicrobial compounds, including imipenem and meropenem, as detected by antimicrobial susceptibility testing (AST). The complete genome sequence of the ECCRA-119 isolate was also obtained using the PacBio RS II platform. Eleven acquired resistance genes were identified in the chromosome; four were detected in plasmid pTB201, while six were detected in plasmid pTB202. Importantly, the carbapenem-resistant gene blaNDM-5 was detected in the IncX3 plasmid pTB203. In addition, seven virulence genes and one metal-resistance gene were also detected. The results of conjugation experiments and the transfer regions identification indicated that the blaNDM-5-harboring plasmid pTB203 could be transferred between E. coli strains.The results reflected the severe bacterial resistance in a poultry farm in Zhejiang province and increased our understanding of the presence and transmission of the blaNDM-5 gene.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.