Menu
September 22, 2019  |  

PacBio sequencing and its applications.

Single-molecule, real-time sequencing developed by Pacific BioSciences offers longer read lengths than the second-generation sequencing (SGS) technologies, making it well-suited for unsolved problems in genome, transcriptome, and epigenetics research. The highly-contiguous de novo assemblies using PacBio sequencing can close gaps in current reference assemblies and characterize structural variation (SV) in personal genomes. With longer reads, we can sequence through extended repetitive regions and detect mutations, many of which are associated with diseases. Moreover, PacBio transcriptome sequencing is advantageous for the identification of gene isoforms and facilitates reliable discoveries of novel genes and novel isoforms of annotated genes, due to its ability to sequence full-length transcripts or fragments with significant lengths. Additionally, PacBio’s sequencing technique provides information that is useful for the direct detection of base modifications, such as methylation. In addition to using PacBio sequencing alone, many hybrid sequencing strategies have been developed to make use of more accurate short reads in conjunction with PacBio long reads. In general, hybrid sequencing strategies are more affordable and scalable especially for small-size laboratories than using PacBio Sequencing alone. The advent of PacBio sequencing has made available much information that could not be obtained via SGS alone. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.


September 22, 2019  |  

De novo transcriptome assembly of the Chinese pearl barley, adlay, by full-length isoform and short-read RNA sequencing.

Adlay (Coix lacryma-jobi) is a tropical grass that has long been used in traditional Chinese medicine and is known for its nutritional benefits. Recent studies have shown that vitamin E compounds in adlay protect against chronic diseases such as cancer and heart disease. However, the molecular basis of adlay’s health benefits remains unknown. Here, we generated adlay gene sets by de novo transcriptome assembly using long-read isoform sequencing (Iso-Seq) and short-read RNA-Sequencing (RNA-Seq). The gene sets obtained from Iso-seq and RNA-seq contained 31,177 genes and 57,901 genes, respectively. We confirmed the validity of the assembled gene sets by experimentally analyzing the levels of prolamin and vitamin E biosynthesis-associated proteins in adlay plant tissues and seeds. We compared the screened adlay genes with known gene families from closely related plant species, such as rice, sorghum and maize. We also identified tissue-specific genes from the adlay leaf, root, and young and mature seed, and experimentally validated the differential expression of 12 randomly-selected genes. Our study of the adlay transcriptome will provide a valuable resource for genetic studies that can enhance adlay breeding programs in the future.


September 22, 2019  |  

Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.


September 22, 2019  |  

Characterization of the SN35N strain-specific exopolysaccharide encoded in the whole circular genome of a plant-derived Lactobacillus plantarum.

Lactobacillus plantarum SN35N, which has been previously isolated from pear, secretes exopolysaccharide (EPS). The aim of the present study is to characterize the EPS chemically and to find the EPS-biosynthesizing gene cluster. The present study demonstrates that the strain produces an acidic EPS carrying phosphate residue, which is composed of glucose, galactose, and mannose at a molecular ratio of 15.0?:?5.7?:?1.0. We also show that acidic EPS strongly inhibits the catalytic activity of hyaluronidase (EC 3.2.1.35), promoting an inflammatory reaction. In the present study, we also determined the complete genome sequence of the SN35N strain, demonstrating that the genome is a circular DNA with 3267626?bp, and the number of predicted coding genes is 3146, with a GC content of 44.51%. In addition, the strain harbors four plasmids, designated pSN35N-1, -2, -3, and -4. Although four EPS-biosynthesizing genes, designated lpe1, lpe2, lpe3, and lpe4, are present in the SN35N chromosomal DNA, another EPS gene cluster, lpe5, is located in the pSN35N-3 plasmid, composed of 35425?bp. EPS low-producing mutants, which were obtained by treating SN35N cells with novobiocin, lost the lpe5 gene cluster in the plasmid-curing experiment, suggesting that the gene cluster for the biosynthesis of acidic EPS is present in the plasmid. The present study shows the chemical characterization of the acidic EPS and its inhibitory effect to the hyaluronidase.


September 22, 2019  |  

The repeat structure of two paralogous genes, Yersinia ruckeri invasin (yrInv) and a “Y. ruckeri invasin-like molecule”, (yrIlm) sheds light on the evolution of adhesive capacities of a fish pathogen.

Inverse autotransporters comprise the recently identified type Ve secretion system and are exemplified by intimin from enterohaemorrhagic Escherichia coli and invasin from enteropathogenic Yersiniae. These proteins share a common domain architecture and promote bacterial adhesion to host cells. Here, we identified and characterized two putative inverse autotransporter genes in the fish pathogen Yersinia ruckeri NVH_3758, namely yrInv (for Y. ruckeri invasin) and yrIlm (for Y. ruckeri invasin-like molecule). When trying to clone the highly repetitive genes for structural and functional studies, we experienced problems in obtaining PCR products. PCR failures and the highly repetitive nature of inverse autotransporters prompted us to sequence the genome of Y. ruckeri NVH_3758 using PacBio sequencing, which produces some of the longest average read lengths available in the industry at this moment. According to our sequencing data, YrIlm is composed of 2603 amino acids (7812bp) and has a molecular mass of 256.4kDa. Based on the new genome information, we performed PCR analysis on four non-sequenced Y. ruckeri strains as well as the sequenced. Y. ruckeri type strain. We found that the genes are variably present in the strains, and that the length of yrIlm, when present, also varies. In addition, the length of the gene product for all strains, including the type strain, was much longer than expected based on deposited sequences. The internal repeats of the yrInv gene product are highly diverged, but represent the same bacterial immunoglobulin-like domains as in yrIlm. Using qRT-PCR, we found that yrIlm and yrInv are differentially expressed under conditions relevant for pathogenesis. In addition, we compared the genomic context of both genes in the newly sequenced Y. ruckeri strain to all available PacBio-sequenced Y. ruckeri genomes, and found indications of recent events of horizontal gene transfer. Taken together, this study demonstrates and highlights the power of Single Molecule Real-Time technology for sequencing highly repetitive proteins, and sheds light on the genetic events that gave rise to these highly repetitive genes in a commercially important fish pathogen. Copyright © 2017 Elsevier Inc. All rights reserved.


September 22, 2019  |  

Unique genetic cassettes in a Thermoanaerobacterium contribute to simultaneous conversion of cellulose and monosugars into butanol.

The demand for cellulosic biofuels is on the rise because of the anticipation for sustainable energy and less greenhouse gas emissions in the future. However, production of cellulosic biofuels, especially cellulosic butanol, has been hampered by the lack of potent microbes that are capable of converting cellulosic biomass into biofuels. We report a wild-type Thermoanaerobacterium thermosaccharolyticum strain TG57, which is capable of using microcrystalline cellulose directly to produce butanol (1.93 g/liter) as the only final product (without any acetone or ethanol produced), comparable to that of engineered microbes thus far. Strain TG57 exhibits significant advances including unique genes responsible for a new butyrate synthesis pathway, no carbon catabolite repression, and the absence of genes responsible for acetone synthesis (which is observed as the main by-product in most Clostridium strains known today). Furthermore, the use of glucose analog 2-deoxyglucose posed a selection pressure to facilitate isolation of strain TG57 with deletion/silencing of carbon catabolite repressor genes-the ccr and xylR genes-and thus is able to simultaneously ferment glucose, xylose, and arabinose to produce butanol (7.33 g/liter) as the sole solvent. Combined analysis of genomic and transcriptomic data revealed unusual aspects of genome organization, numerous determinants for unique bioconversions, regulation of central metabolic pathways, and distinct transcriptomic profiles. This study provides a genome-level understanding of how cellulose is metabolized by T. thermosaccharolyticum and sheds light on the potential of competitive and sustainable biofuel production.


September 22, 2019  |  

Capnocytophaga endodontalis sp. nov., isolated from a human refractory periapical abscess.

A novel Gram-negative, capnophilic, fusiform bacterium, designated strain ChDC OS43T, was isolated from a human refractory periapical abscess in the left mandibular second molar and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene sequence revealed that the strain belongs to the genus Capnocytophaga, as it showed sequence similarities to Capnocytophaga ochracea ATCC 27872T(96.30%) and C. sputigena ATCC 33612T(96.16%). The prevalent fatty acids of strain ChDC OS43Twere isoC15:0(57.54%), C16:0(5.93%), C16:03OH (5.72%), and C18:1cis 9 (4.41%). The complete genome of strain ChDC OS43Twas 3,412,686 bp, and the G+C content was 38.2 mol%. The average nucleotide identity (ANI) value between strain ChDC OS43Tand C. ochracea ATCC 27872Tor C. sputigena ATCC 33612Twas >92.01%. The genome-to-genome distance (GGD) value between strain ChDC OS43Tand C. ochracea ATCC 27872Tor C. sputigena ATCC 33612Twas 32.0 and 45.7%, respectively. Based on the results of phenotypic, chemotaxonomic, and phylogenetic analysis, strain ChDC OS43T(=?KCOM 1579T?=?KCTC 5562T?=?KCCM 42841T?=?JCM 32133T) should be classified as the type strain of a novel species of genus Capnocytophaga, for which the name Capnocytophaga endodontalis sp. nov. is proposed.


September 22, 2019  |  

Somatic hypermutation of T cell receptor a chain contributes to selection in nurse shark thymus.

Since the discovery of the T cell receptor (TcR), immunologists have assigned somatic hypermutation (SHM) as a mechanism employed solely by B cells to diversify their antigen receptors. Remarkably, we found SHM acting in the thymus on a chain locus of shark TcR. SHM in developing shark T cells likely is catalyzed by activation-induced cytidine deaminase (AID) and results in both point and tandem mutations that accumulate non-conservative amino acid replacements within complementarity-determining regions (CDRs). Mutation frequency at TcRa was as high as that seen at B cell receptor loci (BcR) in sharks and mammals, and the mechanism of SHM shares unique characteristics first detected at shark BcR loci. Additionally, fluorescence in situ hybridization showed the strongest AID expression in thymic corticomedullary junction and medulla. We suggest that TcRa utilizes SHM to broaden diversification of the primary aß T cell repertoire in sharks, the first reported use in vertebrates.© 2018, Ott et al.


September 22, 2019  |  

De novo genome assembly of the red silk cotton tree (Bombax ceiba).

Bombax ceiba L. (the red silk cotton tree) is a large deciduous tree that is distributed in tropical and sub-tropical Asia as well as northern Australia. It has great economic and ecological importance, with several applications in industry and traditional medicine in many Asian countries. To facilitate further utilization of this plant resource, we present here the draft genome sequence for B. ceiba.We assembled a relatively intact genome of B. ceiba by using PacBio single-molecule sequencing and BioNano optical mapping technologies. The final draft genome is approximately 895 Mb long, with contig and scaffold N50 sizes of 1.0 Mb and 2.06 Mb, respectively.The high-quality draft genome assembly of B. ceiba will be a valuable resource enabling further genetic improvement and more effective use of this tree species.


September 22, 2019  |  

Characterization and high-quality draft genome sequence of Herbivorax saccincola A7, an anaerobic, alkaliphilic, thermophilic, cellulolytic, and xylanolytic bacterium.

An anaerobic, cellulolytic-xylanolytic bacterium, designated strain A7, was isolated from a cellulose-degrading bacterial community inhabiting bovine manure compost on Ishigaki Island, Japan, by enrichment culture using unpretreated corn stover as the sole carbon source. The strain was Gram-positive, non-endospore forming, non-motile, and formed orange colonies on solid medium. Strain A7 was identified as Herbivorax saccincola by DNA-DNA hybridization, and phylogenetic analysis based on 16S rRNA gene sequences showed that it was closely related to H. saccincola GGR1 (= DSM 101079T). H. saccincola A7 (= JCM 31827=DSM 104321) had quite similar phenotypic characteristics to those of strain GGR1. However, the optimum growth of A7 was at alkaline pH (9.0) and 55°C, compared to pH 7.0 at 60°C for GGR1, and the fatty acid profile of A7 contained 1.7-times more C17:0 iso than GGR1. The draft genome sequence revealed that H. saccincola A7 possessed a cellulosome-like extracellular macromolecular complex, which has also been found for Clostridium thermocellum and C. clariflavum. H. saccincola A7 contained more glycoside hydrolases (GHs) belonging to GH families-11 and -2, and more diversity of xylanolytic enzymes, than C. thermocellum and C. clariflavum. H. saccincola A7 could grow on xylan because it encoded essential genes for xylose metabolism, such as a xylose transporter, xylose isomerase, xylulokinase, and ribulose-phosphate 3-epimerase, which are absent from C. thermocellum. These results indicated that H. saccincola A7 has great potential as a microorganism that can effectively degrade lignocellulosic biomass. Copyright © 2018 Elsevier GmbH. All rights reserved.


September 22, 2019  |  

Whole-genome sequence and genome annotation of Xanthomonas citri pv. mangiferaeindicae, causal agent of bacterial black spot on Mangifera indica.

A newly isolated strain XC01 was identified as Xanthomonas citri pv. mangiferaeindicae, isolated from an infected mango fruit in Guangxi, China. The complete genome sequence of XC01 was carried out using the PacBio RSII platform. The genome contains a circular chromosome with 3,865,165 bp, 3442 protein-coding genes, 53 tRNAs, and 2 rRNA operons. Phylogenetic analysis revealed that this pathogen is very close to the soybeans bacterial pustule pathogen X. citri pv. glycines CFBP 2526, with a completely different host range. The genome sequence of XC01 may shed a highlight genes with a demonstrated or proposed role in on the pathogenesis.


September 22, 2019  |  

Large-scale gene losses underlie the genome evolution of parasitic plant Cuscuta australis.

Dodders (Cuscuta spp., Convolvulaceae) are root- and leafless parasitic plants. The physiology, ecology, and evolution of these obligate parasites are poorly understood. A high-quality reference genome of Cuscuta australis was assembled. Our analyses reveal that Cuscuta experienced accelerated molecular evolution, and Cuscuta and the convolvulaceous morning glory (Ipomoea) shared a common whole-genome triplication event before their divergence. C. australis genome harbors 19,671 protein-coding genes, and importantly, 11.7% of the conserved orthologs in autotrophic plants are lost in C. australis. Many of these gene loss events likely result from its parasitic lifestyle and the massive changes of its body plan. Moreover, comparison of the gene expression patterns in Cuscuta prehaustoria/haustoria and various tissues of closely related autotrophic plants suggests that Cuscuta haustorium formation requires mostly genes normally involved in root development. The C. australis genome provides important resources for studying the evolution of parasitism, regressive evolution, and evo-devo in plant parasites.


September 22, 2019  |  

Genomic analysis of the insect-killing fungus Beauveria bassiana JEF-007 as a biopesticide.

Insect-killing fungi have high potential in pest management. A deeper insight into the fungal genes at the whole genome level is necessary to understand the inter-species or intra-species genetic diversity of fungal genes, and to select excellent isolates. In this work, we conducted a whole genome sequencing of Beauveria bassiana (Bb) JEF-007 and characterized pathogenesis-related features and compared with other isolates including Bb ARSEF2860. A large number of Bb JEF-007 genes showed high identity with Bb ARSEF2860, but some genes showed moderate or low identity. The two Bb isolates showed a significant difference in vegetative growth, antibiotic-susceptibility, and virulence against Tenebrio molitor larvae. When highly identical genes between the two Bb isolates were subjected to real-time PCR, their transcription levels were different, particularly in heat shock protein 30 (hsp30) gene which is related to conidial thermotolerance. In several B. bassiana isolates, chitinases and trypsin-like protease genes involved in pathogenesis were highly conserved, but other genes showed noticeable sequence variation within the same species. Given the transcriptional and genetic diversity in B. bassiana, a selection of virulent isolates with industrial advantages is a pre-requisite, and this genetic approach could support the development of excellent biopesticides with intellectual property protection.


September 22, 2019  |  

Complete genome of streamlined marine actinobacterium Pontimonas salivibrio strain CL-TW6T adapted to coastal planktonic lifestyle.

Pontimonas salivibrio strain CL-TW6T (=KCCM 90105?=?JCM18206) was characterized as the type strain of a new genus within the Actinobacterial family Microbacteriaceae. It was isolated from a coastal marine environment in which members of Microbactericeae have not been previously characterized.The genome of P. salivibrio CL-TW6T was a single chromosome of 1,760,810 bp. Genomes of this small size are typically found in bacteria growing slowly in oligotrophic zones and said to be streamlined. Phylogenetic analysis showed it to represent a lineage originating in the Microbacteriaceae radiation occurring before the snowball Earth glaciations, and to have a closer relationship with some streamlined bacteria known through metagenomic data. Several genomic characteristics typical of streamlined bacteria are found: %G?+?C is lower than non-streamlined members of the phylum; there are a minimal number of rRNA and tRNA genes, fewer paralogs in most gene families, and only two sigma factors; there is a noticeable absence of some nonessential metabolic pathways, including polyketide synthesis and catabolism of some amino acids. There was no indication of any phage genes or plasmids, however, a system of active insertion elements was present. P. salivibrio appears to be unusual in having polyrhamnose-based cell wall oligosaccharides instead of mycolic acid or teichoic acid-based oligosaccharides. Oddly, it conducts sulfate assimilation apparently for sulfating cell wall components, but not for synthesizing amino acids. One gene family it has more of, rather than fewer of, are toxin/antitoxin systems, which are thought to down-regulate growth during nutrient deprivation or other stressful conditions.Because of the relatively small number of paralogs and its relationship to the heavily characterized Mycobacterium tuberculosis, we were able to heavily annotate the genome of P. salivibrio CL-TW6T. Its streamlined status and relationship to streamlined metagenomic constructs makes it an important reference genome for study of the streamlining concept. The final evolutionary trajectory of CL-TW6 T was to adapt to growth in a non-oligotrophic coastal zone. To understand that adaptive process, we give a thorough accounting of gene content, contrasting with both oligotrophic streamlined bacteria and large genome bacteria, and distinguishing between genes derived by vertical and horizontal descent.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.