Menu
June 1, 2021  |  

Genome assembly strategies of the recent polyploid, Coffea arabica.

Arabica coffee, revered for its taste and aroma, has a complex genome. It is an allotetraploid (2n=4x=44) with a genome size of approximately 1.3 Gb, derived from the recent (< 0.6 Mya) hybridization of two diploid progenitors (2n=2x=22), C. canephora (710 Mb) and C. eugenioides (670 Mb). Both parental species diverged recently (< 4.2Mya) and their genomes are highly homologous. To facilitate assembly, a dihaploid plant was chosen for sequencing. Initial genome assembly attempts with short read data produced an assembly covering 1,031 Mb of the C. arabica genome with a contig L50 of 9kb. By implementation of long read PacBio at greater than 50x coverage and cutting-edge PacBio software, a de novo PacBio-only genome assembly was constructed that covers 1,042 Mb of the genome with an L50 of 267 kb. The two assemblies were assessed and compared to determine gene content, chimeric regions, and the ability to separate the parental genomes. A genetic map that contains 600 SSRs is being used for anchoring the contigs and improve the sub-genome differentiation together with the search of sub-genome specific SNPs. PacBio transcriptome sequencing is currently being added to finalize gene annotation of the polished assembly. The finished genome assembly will be used to guide re-sequencing assemblies of parental genomes (C. canephora and C. eugenioides) as well as a template for GBS analysis and whole genome re-sequencing of a set of C. arabica accessions representative of the species diversity. The obtained data will provide powerful genomic tools to enable more efficient coffee breeding strategies for this crop, which is highly susceptible to climate change and is the main source of income for millions of small farmers in producing countries.


June 1, 2021  |  

SMRT Sequencing of DNA and RNA samples extracted from formalin-fixed and paraffin embedded tissues using adaptive focused acoustics by Covaris.

Recent advances in next-generation sequencing have led to an increased use of formalin-fixed and paraffin-embedded (FFPE) tissues for medical samples in disease and scientific research. Single Molecule, Real-Time (SMRT) Sequencing offers a unique advantage for direct analysis of FFPE samples without amplification. However, obtaining ample long-read information from FFPE samples has been a challenge due to the quality and quantity of the extracted DNA. FFPE samples often contain damaged sites, including breaks in the backbone and missing or altered nucleotide bases, which directly impact sequencing and target enrichment. Additionally, the quality and quantity of the recovered DNA vary depending on the extraction methods used. We have evaluated the Covaris® Adaptive Focused Acoustics (AFA) system as a method for obtaining high molecular weight DNA suitable for SMRTbell™ template preparation and subsequent PacBio RS II sequencing. To test the Covaris system, we extracted DNA from normal kidney FFPE scrolls acquired from the Cooperative Human Tissue Network (CHTN), University of Pennsylvania. Damaged sites in the extracted DNA were repaired using a DNA Damage Repair step, and the treated DNA was constructed into SMRTbell libraries for sequencing on the PacBio System. Using the same repaired DNA, we also tested the efficiency of PCR in amplifying targets of up to 10 kb. The resulting amplicons were also constructed into SMRTbell templates for full-length sequencing on the PacBio System. We found the Adaptive Focused Acoustics (AFA) system by Covaris to be effective. This system is easy and simple to use, and the resulting DNA is compatible with SMRTbell library preparation for targeted and whole genome SMRT Sequencing. The data presented here demonstrates feasibility of SMRT Sequencing with FFPE samples.


June 1, 2021  |  

Analysis of full-length metagenomic 16S genes by Single Molecule, Real-Time Sequencing

High-throughput sequencing of the complete 16S rRNA gene has become a valuable tool for characterizing microbial communities. However, the short reads produced by second-generation sequencing cannot provide taxonomic classification below the genus level. In this study, we demonstrate the capability of PacBio’s Single Molecule, Real-Time (SMRT) Sequencing to generate community profiles using mock microbial community samples from BEI Resources. We also evaluate multiplexing capabilities using PacBio barcodes on pooled samples comprising heterogeneous 16S amplicon populations representing soil, fecal, and mock communities.


April 21, 2020  |  

Characterization of the genome of a Nocardia strain isolated from soils in the Qinghai-Tibetan Plateau that specifically degrades crude oil and of this biodegradation.

A strain of Nocardia isolated from crude oil-contaminated soils in the Qinghai-Tibetan Plateau degrades nearly all components of crude oil. This strain was identified as Nocardia soli Y48, and its growth conditions were determined. Complete genome sequencing showed that N. soli Y48 has a 7.3?Mb genome and many genes responsible for hydrocarbon degradation, biosurfactant synthesis, emulsification and other hydrocarbon degradation-related metabolisms. Analysis of the clusters of orthologous groups (COGs) and genomic islands (GIs) revealed that Y48 has undergone significant gene transfer events to adapt to changing environmental conditions (crude oil contamination). The structural features of the genome might provide a competitive edge for the survival of N. soli Y48 in oil-polluted environments and reflect the adaptation of coexisting bacteria to distinct nutritional niches.Copyright © 2018. Published by Elsevier Inc.


April 21, 2020  |  

Analysis of the Complete Genome Sequence of a Novel, Pseudorabies Virus Strain Isolated in Southeast Europe.

Pseudorabies virus (PRV) is the causative agent of Aujeszky’s disease giving rise to significant economic losses worldwide. Many countries have implemented national programs for the eradication of this virus. In this study, long-read sequencing was used to determine the nucleotide sequence of the genome of a novel PRV strain (PRV-MdBio) isolated in Serbia.In this study, a novel PRV strain was isolated and characterized. PRV-MdBio was found to exhibit similar growth properties to those of another wild-type PRV, the strain Kaplan. Single-molecule real-time (SMRT) sequencing has revealed that the new strain differs significantly in base composition even from strain Kaplan, to which it otherwise exhibits the highest similarity. We compared the genetic composition of PRV-MdBio to strain Kaplan and the China reference strain Ea and obtained that radical base replacements were the most common point mutations preceding conservative and silent mutations. We also found that the adaptation of PRV to cell culture does not lead to any tendentious genetic alteration in the viral genome.PRV-MdBio is a wild-type virus, which differs in base composition from other PRV strains to a relatively large extent.


April 21, 2020  |  

A hybrid de novo genome assembly of the honeybee, Apis mellifera, with chromosome-length scaffolds.

The ability to generate long sequencing reads and access long-range linkage information is revolutionizing the quality and completeness of genome assemblies. Here we use a hybrid approach that combines data from four genome sequencing and mapping technologies to generate a new genome assembly of the honeybee Apis mellifera. We first generated contigs based on PacBio sequencing libraries, which were then merged with linked-read 10x Chromium data followed by scaffolding using a BioNano optical genome map and a Hi-C chromatin interaction map, complemented by a genetic linkage map.Each of the assembly steps reduced the number of gaps and incorporated a substantial amount of additional sequence into scaffolds. The new assembly (Amel_HAv3) is significantly more contiguous and complete than the previous one (Amel_4.5), based mainly on Sanger sequencing reads. N50 of contigs is 120-fold higher (5.381 Mbp compared to 0.053 Mbp) and we anchor >?98% of the sequence to chromosomes. All of the 16 chromosomes are represented as single scaffolds with an average of three sequence gaps per chromosome. The improvements are largely due to the inclusion of repetitive sequence that was unplaced in previous assemblies. In particular, our assembly is highly contiguous across centromeres and telomeres and includes hundreds of AvaI and AluI repeats associated with these features.The improved assembly will be of utility for refining gene models, studying genome function, mapping functional genetic variation, identification of structural variants, and comparative genomics.


September 22, 2019  |  

Differential responses of total and active soil microbial communities to long-term experimental N deposition

Abstract The relationship between total and metabolically active soil microbial communities can provide insight into how these communities are impacted by environmental change, which may impact the flow of energy and cycling of nutrients in the future. For example, the anthropogenic release of biologically available N has dramatically increased over the last 150 years, which can alter the processes controlling C storage in terrestrial ecosystems. In a northern hardwood forest ecosystem located in Michigan, USA, nearly 20 years of experimentally increased atmospheric N deposition has reduced forest floor decay and increased soil C storage. A microbial mechanism underlies this response, as compositional changes in the soil microbial community have been concomitantly documented with these biogeochemical changes. Here, we co-extracted DNA and RNA from decaying leaf litter to determine if experimental atmospheric N deposition has lowered the diversity and altered the composition of the whole communities of bacteria and fungi (i.e., DNA-based) and well as its active members (i.e., RNA-based). In our experiment, experimental N deposition did not affect the composition, diversity, or richness of the total forest floor fungal community, but did lower the diversity (-8%), as well as altered the composition of the active fungal community. In contrast, neither the total nor active forest floor bacterial community was significantly affected by experimental N deposition. Our results suggest that future rates of atmospheric N deposition can fundamentally alter the organization of the saprotrophic soil fungal community, key mediators of C cycling in terrestrial environments.


September 22, 2019  |  

Exploring the genome and transcriptome of the cave nectar bat Eonycteris spelaea with PacBio long-read sequencing.

In the past two decades, bats have emerged as an important model system to study host-pathogen interactions. More recently, it has been shown that bats may also serve as a new and excellent model to study aging, inflammation, and cancer, among other important biological processes. The cave nectar bat or lesser dawn bat (Eonycteris spelaea) is known to be a reservoir for several viruses and intracellular bacteria. It is widely distributed throughout the tropics and subtropics from India to Southeast Asia and pollinates several plant species, including the culturally and economically important durian in the region. Here, we report the whole-genome and transcriptome sequencing, followed by subsequent de novo assembly, of the E. spelaea genome solely using the Pacific Biosciences (PacBio) long-read sequencing platform.The newly assembled E. spelaea genome is 1.97 Gb in length and consists of 4,470 sequences with a contig N50 of 8.0 Mb. Identified repeat elements covered 34.65% of the genome, and 20,640 unique protein-coding genes with 39,526 transcripts were annotated.We demonstrated that the PacBio long-read sequencing platform alone is sufficient to generate a comprehensive de novo assembled genome and transcriptome of an important bat species. These results will provide useful insights and act as a resource to expand our understanding of bat evolution, ecology, physiology, immunology, viral infection, and transmission dynamics.


September 22, 2019  |  

Characterization of the Rosellinia necatrix transcriptome and genes related to pathogenesis by single-molecule mRNA sequencing.

White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world’s most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.


September 22, 2019  |  

Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island.

Lignocellulose, mostly composed of cellulose, hemicellulose and lignin generated through secondary growth of woody plant, is considered as promising resources for bio-fuel. In order to use lignocellulose as a biofuel, the biodegradation besides high-cost chemical treatments were applied, but its knowledge on decomposition of lignocellulose occurring in a natural environment were insufficient. We analyzed 16S rRNA gene and metagenome to understand how the lignocellulose are decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using Single Molecules Real-Time Sequencing revealed that the assembled contigs determined by originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy) and Protein families (Pfam) based analysis showed that Proteobacteria was involved in degrading whole lignocellulose and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrate. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.


September 22, 2019  |  

Complete genome sequence of Enterococcus durans Oregon-R-modENCODE strain BDGP3, a lactic acid bacterium found in the Drosophila melanogaster gut

Enterococcus durans Oregon-R-modENCODE strain BDGP3 was isolated from the Drosophila melanogaster gut for functional host-microbe interaction studies. The complete genome is composed of a single circular genome of 2,983,334 bp, with a G+C content of 38%, and a single plasmid of 5,594 bp. Copyright © 2017 Wan et al.


September 22, 2019  |  

Active microorganisms in forest soils differ from the total community yet are shaped by the same environmental factors: the influence of pH and soil moisture.

Predicting the impact of environmental change on soil microbial functions requires an understanding of how environmental factors shape microbial composition. Here, we investigated the influence of environmental factors on bacterial and fungal communities across an expanse of northern hardwood forest in Michigan, USA, which spans a 500-km regional climate gradient. We quantified soil microbial community composition using high-throughput DNA sequencing on coextracted rDNA (i.e. total community) and rRNA (i.e. active community). Within both bacteria and fungi, total and active communities were compositionally distinct from one another across the regional gradient (bacteria P = 0.01; fungi P < 0.01). Taxonomically, the active community was a subset of the total community. Compositional differences between total and active communities reflected changes in the relative abundance of dominant taxa. The composition of both the total and active microbial communities varied by site across the gradient (P < 0.01) and was shaped by differences in soil moisture, pH, SOM carboxyl content, as well as C and N concentration. Our study highlights the importance of distinguishing between metabolically active microorganisms and the total community, and emphasizes that the same environmental factors shape the total and active communities of bacteria and fungi in this ecosystem.© FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


September 22, 2019  |  

Transcriptome profiling of two ornamental and medicinal papaver herbs.

The Papaver spp. (Papaver rhoeas (Corn poppy) and Papaver nudicaule (Iceland poppy)) genera are ornamental and medicinal plants that are used for the isolation of alkaloid drugs. In this study, we generated 700 Mb of transcriptome sequences with the PacBio platform. They were assembled into 120,926 contigs, and 1185 (82.2%) of the benchmarking universal single-copy orthologs (BUSCO) core genes were completely present in our assembled transcriptome. Furthermore, using 128 Gb of Illumina sequences, the transcript expression was assessed at three stages of Papaver plant development (30, 60, and 90 days), from which we identified 137 differentially expressed transcripts. Furthermore, three co-occurrence heat maps are generated from 51 different plant genomes along with the Papaver transcriptome, i.e., secondary metabolite biosynthesis, isoquinoline alkaloid biosynthesis (BIA) pathway, and cytochrome. Sixty-nine transcripts in the BIA pathway along with 22 different alkaloids (quantified with LC-QTOF-MS/MS) were mapped into the BIA KEGG map (map00950). Finally, we identified 39 full-length cytochrome transcripts and compared them with other genomes. Collectively, this transcriptome data, along with the expression and quantitative metabolite profiles, provides an initial recording of secondary metabolites and their expression related to Papaver plant development. Moreover, these profiles could help to further detail the functional characterization of the various secondary metabolite biosynthesis and Papaver plant development associated problems.


September 22, 2019  |  

Transcriptome-wide investigation of circular RNAs in rice.

Various stable circular RNAs (circRNAs) are newly identified to be the abundance of noncoding RNAs in Archaea, Caenorhabditis elegans, mice, and humans through high-throughput deep sequencing coupled with analysis of massive transcriptional data. CircRNAs play important roles in miRNA function and transcriptional controlling by acting as competing endogenous RNAs or positive regulators on their parent coding genes. However, little is known regarding circRNAs in plants. Here, we report 2354 rice circRNAs that were identified through deep sequencing and computational analysis of ssRNA-seq data. Among them, 1356 are exonic circRNAs. Some circRNAs exhibit tissue-specific expression. Rice circRNAs have a considerable number of isoforms, including alternative backsplicing and alternative splicing circularization patterns. Parental genes with multiple exons are preferentially circularized. Only 484 circRNAs have backsplices derived from known splice sites. In addition, only 92 circRNAs were found to be enriched for miniature inverted-repeat transposable elements (MITEs) in flanking sequences or to be complementary to at least 18-bp flanking intronic sequences, indicating that there are some other production mechanisms in addition to direct backsplicing in rice. Rice circRNAs have no significant enrichment for miRNA target sites. A transgenic study showed that overexpression of a circRNA construct could reduce the expression level of its parental gene in transgenic plants compared with empty-vector control plants. This suggested that circRNA and its linear form might act as a negative regulator of its parental gene. Overall, these analyses reveal the prevalence of circRNAs in rice and provide new biological insights into rice circRNAs.© 2015 Lu et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.