Menu
July 19, 2019  |  

Recent advances in inferring viral diversity from high-throughput sequencing data.

Rapidly evolving RNA viruses prevail within a host as a collection of closely related variants, referred to as viral quasispecies. Advances in high-throughput sequencing (HTS) technologies have facilitated the assessment of the genetic diversity of such virus populations at an unprecedented level of detail. However, analysis of HTS data from virus populations is challenging due to short, error-prone reads. In order to account for uncertainties originating from these limitations, several computational and statistical methods have been developed for studying the genetic heterogeneity of virus population. Here, we review methods for the analysis of HTS reads, including approaches to local diversity estimation and global haplotype reconstruction. Challenges posed by aligning reads, as well as the impact of reference biases on diversity estimates are also discussed. In addition, we address some of the experimental approaches designed to improve the biological signal-to-noise ratio. In the future, computational methods for the analysis of heterogeneous virus populations are likely to continue being complemented by technological developments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.


July 19, 2019  |  

Deletion-bias in DNA double-strand break repair differentially contributes to plant genome shrinkage.

In order to prevent genome instability, cells need to be protected by a number of repair mechanisms, including DNA double-strand break (DSB) repair. The extent to which DSB repair, biased towards deletions or insertions, contributes to evolutionary diversification of genome size is still under debate. We analyzed mutation spectra in Arabidopsis thaliana and in barley (Hordeum vulgare) by PacBio sequencing of three DSB-targeted loci each, uncovering repair via gene conversion, single strand annealing (SSA) or nonhomologous end-joining (NHEJ). Furthermore, phylogenomic comparisons between A. thaliana and two related species were used to detect naturally occurring deletions during Arabidopsis evolution. Arabidopsis thaliana revealed significantly more and larger deletions after DSB repair than barley, and barley displayed more and larger insertions. Arabidopsis displayed a clear net loss of DNA after DSB repair, mainly via SSA and NHEJ. Barley revealed a very weak net loss of DNA, apparently due to less active break-end resection and easier copying of template sequences into breaks. Comparative phylogenomics revealed several footprints of SSA in the A. thaliana genome. Quantitative assessment of DNA gain and loss through DSB repair processes suggests deletion-biased DSB repair causing ongoing genome shrinking in A. thaliana, whereas genome size in barley remains nearly constant.© 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.


July 19, 2019  |  

Dual redundant sequencing strategy: Full-length gene characterisation of 1056 novel and confirmatory HLA alleles.

The high-throughput department of DKMS Life Science Lab encounters novel human leukocyte antigen (HLA) alleles on a daily basis. To characterise these alleles, we have developed a system to sequence the whole gene from 5′- to 3′-UTR for the HLA loci A, B, C, DQB1 and DPB1 for submission to the European Molecular Biology Laboratory – European Nucleotide Archive (EMBL-ENA) and the IPD-IMGT/HLA Database. Our workflow is based on a dual redundant sequencing strategy. Using shotgun sequencing on an Illumina MiSeq instrument and single molecule real-time (SMRT) sequencing on a PacBio RS II instrument, we are able to achieve highly accurate HLA full-length consensus sequences. Remaining conflicts are resolved using the R package DR2S (Dual Redundant Reference Sequencing). Given the relatively high throughput of this strategy, we have developed the semi-automated web service TypeLoader, to aid in the submission of sequences to the EMBL-ENA and the IPD-IMGT/HLA Database. In the IPD-IMGT/HLA Database release 3.24.0 (April 2016; prior to the submission of the sequences described here), only 5.2% of all known HLA alleles have been fully characterised together with intronic and UTR sequences. So far, we have applied our strategy to characterise and submit 1056 HLA alleles, thereby more than doubling the number of fully characterised alleles. Given the increasing application of next generation sequencing (NGS) for full gene characterisation in clinical practice, extending the HLA database concomitantly is highly desirable. Therefore, we propose this dual redundant sequencing strategy as a workflow for submission of novel full-length alleles and characterisation of sequences that are as yet incomplete. This would help to mitigate the predominance of partially known alleles in the database.© 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.


July 19, 2019  |  

Comparative genomics of two sequential Candida glabrata clinical isolates.

Candida glabrata is an important fungal pathogen which develops rapid antifungal resistance in treated patients. It is known that azole treatments lead to antifungal resistance in this fungal species and that multidrug efflux transporters are involved in this process. Specific mutations in the transcriptional regulator PDR1 result in upregulation of the transporters. In addition, we showed that the PDR1 mutations can contribute to enhance virulence in animal models. In this study, we were interested to compare genomes of two specific C. glabrata-related isolates, one of which was azole susceptible (DSY562) while the other was azole resistant (DSY565). DSY565 contained a PDR1 mutation (L280F) and was isolated after a time-lapse of 50 d of azole therapy. We expected that genome comparisons between both isolates could reveal additional mutations reflecting host adaptation or even additional resistance mechanisms. The PacBio technology used here yielded 14 major contigs (sizes 0.18-1.6 Mb) and mitochondrial genomes from both DSY562 and DSY565 isolates that were highly similar to each other. Comparisons of the clinical genomes with the published CBS138 genome indicated important genome rearrangements, but not between the clinical strains. Among the unique features, several retrotransposons were identified in the genomes of the investigated clinical isolates. DSY562 and DSY565 each contained a large set of adhesin-like genes (101 and 107, respectively), which exceed by far the number of reported adhesins (63) in the CBS138 genome. Comparison between DSY562 and DSY565 yielded 17 nonsynonymous SNPs (among which the was the expected PDR1 mutation) as well as small size indels in coding regions (11) but mainly in adhesin-like genes. The genomes contained a DNA mismatch repair allele of MSH2 known to be involved in the so-called hyper-mutator phenotype of this yeast species and the number of accumulated mutations between both clinical isolates is consistent with the presence of a MSH2 defect. In conclusion, this study is the first to compare genomes of C. glabrata sequential clinical isolates using the PacBio technology as an approach. The genomes of these isolates taken in the same patient at two different time points exhibited limited variations, even if submitted to the host pressure. Copyright © 2017 Vale-Silva et al.


July 19, 2019  |  

Improved maize reference genome with single-molecule technologies.

Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.


July 19, 2019  |  

Comparative and functional genomics of the Lactococcus lactis taxon; insights into evolution and niche adaptation.

Lactococcus lactis is among the most widely studied lactic acid bacterial species due to its long history of safe use and economic importance to the dairy industry, where it is exploited as a starter culture in cheese production.In the current study, we report on the complete sequencing of 16 L. lactis subsp. lactis and L. lactis subsp. cremoris genomes. The chromosomal features of these 16 L. lactis strains in conjunction with 14 completely sequenced, publicly available lactococcal chromosomes were assessed with particular emphasis on discerning the L. lactis subspecies division, evolution and niche adaptation. The deduced pan-genome of L. lactis was found to be closed, indicating that the representative data sets employed for this analysis are sufficient to fully describe the genetic diversity of the taxon.Niche adaptation appears to play a significant role in governing the genetic content of each L. lactis subspecies, while (differential) genome decay and redundancy in the dairy niche is also highlighted.


July 19, 2019  |  

IG and TR single chain fragment variable (scFv) sequence analysis: a new advanced functionality of IMGT/V-QUEST and IMGT/HighV-QUEST.

IMGT®, the international ImMunoGeneTics information system® ( http://www.imgt.org ), was created in 1989 in Montpellier, France (CNRS and Montpellier University) to manage the huge and complex diversity of the antigen receptors, and is at the origin of immunoinformatics, a science at the interface between immunogenetics and bioinformatics. Immunoglobulins (IG) or antibodies and T cell receptors (TR) are managed and described in the IMGT® databases and tools at the level of receptor, chain and domain. The analysis of the IG and TR variable (V) domain rearranged nucleotide sequences is performed by IMGT/V-QUEST (online since 1997, 50 sequences per batch) and, for next generation sequencing (NGS), by IMGT/HighV-QUEST, the high throughput version of IMGT/V-QUEST (portal begun in 2010, 500,000 sequences per batch). In vitro combinatorial libraries of engineered antibody single chain Fragment variable (scFv) which mimic the in vivo natural diversity of the immune adaptive responses are extensively screened for the discovery of novel antigen binding specificities. However the analysis of NGS full length scFv (~850 bp) represents a challenge as they contain two V domains connected by a linker and there is no tool for the analysis of two V domains in a single chain.The functionality “Analyis of single chain Fragment variable (scFv)” has been implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST for the analysis of the two V domains of IG and TR scFv. It proceeds in five steps: search for a first closest V-REGION, full characterization of the first V-(D)-J-REGION, then search for a second V-REGION and full characterization of the second V-(D)-J-REGION, and finally linker delimitation.For each sequence or NGS read, positions of the 5’V-DOMAIN, linker and 3’V-DOMAIN in the scFv are provided in the ‘V-orientated’ sense. Each V-DOMAIN is fully characterized (gene identification, sequence description, junction analysis, characterization of mutations and amino changes). The functionality is generic and can analyse any IG or TR single chain nucleotide sequence containing two V domains, provided that the corresponding species IMGT reference directory is available.The “Analysis of single chain Fragment variable (scFv)” implemented in IMGT/V-QUEST and, for NGS, in IMGT/HighV-QUEST provides the identification and full characterization of the two V domains of full-length scFv (~850 bp) nucleotide sequences from combinatorial libraries. The analysis can also be performed on concatenated paired chains of expressed antigen receptor IG or TR repertoires.


July 19, 2019  |  

PacBio sequencing reveals transposable element as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae.

The sustainable cultivation of rice, which serves as staple food crop for more than half of the world’s population, is under serious threat due to the huge yield losses inflicted by rice blast disease caused by the globally destructive fungus Magnaporthe oryzae (Pyricularia oryzae) (Dean et al., 2012, Nalley et al., 2016, Deng et al., 2017). This filamentous ascomycete fungus is also capable of causing blast infection on other economically important cereal crops, including wheat, millet, and barley, making it the world’s most important plant pathogenic fungus (Zhong et al., 2016). The advent of whole-genome sequencing technology and the subsequent deployment of next-generation sequencing (NGS) strategies have successfully generated genome assemblies for over 50 isolates of M. oryzae, which have played an instrumental role in enhancing our understanding of how rice blast fungus undertakes host adaptation, host specificity, and host range expansion to overcome host resistance (Dean et al., 2005, Xue et al., 2012, Wu et al., 2015, Zhang et al., 2016). However, research findings obtained from comparative genomic studies conducted using the NGS-assembled genome do not present an in-depth account of the genomic features that contribute to the prevailing genomic variations among M. oryzae species, because NGS assemblies are highly fragmented and lack most of the lineage-specific (LS) regions, which are more plastic than the core genome and enriched with repeats and effector proteins (Raffaele and Kamoun, 2012, Faino et al., 2016).


July 19, 2019  |  

Analysis of recombinational switching at the antigenic variation locus of the Lyme spirochete using a novel PacBio sequencing pipeline.

The Lyme disease spirochete evades the host immune system by combinatorial variation of VlsE, a surface antigen. Antigenic variation occurs via segmental gene conversion from contiguous silent cassettes into the vlsE locus. Because of the high degree of similarity between switch variants and the size of vlsE, short-read NGS technologies have been unsuitable for sequencing vlsE populations. Here we use PacBio sequencing technology coupled with the first fully-automated software pipeline (VAST) to accurately process NGS data by minimizing error frequency, eliminating heteroduplex errors and accurately aligning switch variants. We extend earlier studies by showing use of almost all of the vlsE SNP repertoire. In different tissues of the same mouse, 99.6% of the variants were unique, suggesting that dissemination of Borrelia burgdorferi is predominantly unidirectional with little tissue-to-tissue hematogenous dissemination. We also observed a similar number of variants in SCID and wild-type mice, a heatmap of location and frequency of amino acid changes on the 3D structure and note differences observed in SCID versus wild type mice that hint at possible amino acid function. Our observed selection against diversification of residues at the dimer interface in wild-type mice strongly suggests that dimerization is required for in vivo functionality of vlsE.© 2017 John Wiley & Sons Ltd.


July 19, 2019  |  

Single molecule real-time (SMRT®) DNA sequencing of HLA genes at ultra-high resolution from 126 International HLA and Immunogenetics Workshop cell lines.

The hyperpolymorphic HLA genes play important roles in disease and transplantation and act as genetic markers of migration and evolution. A panel of 107 B-lymphoblastoid cell lines (B-LCLs) was established in 1987 at the 10th International Histocompatibility Workshop as a resource for the immunogenetics community. These B-LCLs are well characterised and represent diverse ethnicities and HLA haplotypes. Here we have applied Pacific Biosciences’ Single Molecule Real-Time (SMRT) DNA sequencing to HLA type 126 B-LCL, including the 107 IHIW cells, to ultra-high resolution. Amplicon sequencing of full-length HLA class I genes (HLA-A, -B and -C) and partial length HLA class II genes (HLA-DRB1, -DQB1 and -DPB1) was performed. We typed a total of 931 HLA alleles, 895 (96%) of which were consistent with the typing in the IPD-IMGT/HLA Database (Release 3.27.0, 2017-01-20), with 595 (64%) typed at a higher resolution. Discrepant types, including novel alleles (n=10) and changes in zygosity (n=13), as well as previously unreported types (n=34) were observed. In addition, patterns of linkage disequilibrium were distinguished by four-field resolution typing of HLA-B and HLA-C. By improving and standardising the HLA typing of these B-LCLs, we have ensured their continued usefulness as a resource for the immunogenetics community in the age of next generation DNA sequencing.This article is protected by copyright. All rights reserved.


July 19, 2019  |  

Dissecting the causal mechanism of X-linked Dystonia-Parkinsonism by integrating genome and transcriptome assembly.

X-linked Dystonia-Parkinsonism (XDP) is a Mendelian neurodegenerative disease that is endemic to the Philippines and is associated with a founder haplotype. We integrated multiple genome and transcriptome assembly technologies to narrow the causal mutation to the TAF1 locus, which included a SINE-VNTR-Alu (SVA) retrotransposition into intron 32 of the gene. Transcriptome analyses identified decreased expression of the canonical cTAF1 transcript among XDP probands, and de novo assembly across multiple pluripotent stem-cell-derived neuronal lineages discovered aberrant TAF1 transcription that involved alternative splicing and intron retention (IR) in proximity to the SVA that was anti-correlated with overall TAF1 expression. CRISPR/Cas9 excision of the SVA rescued this XDP-specific transcriptional signature and normalized TAF1 expression in probands. These data suggest an SVA-mediated aberrant transcriptional mechanism associated with XDP and may provide a roadmap for layered technologies and integrated assembly-based analyses for other unsolved Mendelian disorders. Copyright © 2018 Elsevier Inc. All rights reserved.


July 19, 2019  |  

Single molecule real time sequencing in ADTKD-MUC1 allows complete assembly of the VNTR and exact positioning of causative mutations.

Recently, the Mucin-1 (MUC1) gene has been identified as a causal gene of autosomal dominant tubulointerstitial kidney disease (ADTKD). Most causative mutations are buried within a GC-rich 60 basepair variable number of tandem repeat (VNTR), which escapes identification by massive parallel sequencing methods due to the complexity of the VNTR. We established long read single molecule real time sequencing (SMRT) targeted to the MUC1-VNTR as an alternative strategy to the snapshot assay. Our approach allows complete VNTR assembly, thereby enabling the detection of all variants residing within the VNTR and simultaneous determination of VNTR length. We present high resolution data on the VNTR architecture for a cohort of snapshot positive (n?=?9) and negative (n?=?7) ADTKD families. By SMRT sequencing we could confirm the diagnosis in all previously tested cases, reconstruct both VNTR alleles and determine the exact position of the causative variant in eight of nine families. This study demonstrates that precise positioning of the causative mutation(s) and identification of other coding and noncoding sequence variants in ADTKD-MUC1 is feasible. SMRT sequencing could provide a powerful tool to uncover potential factors encoded within the VNTR that associate with intra- and interfamilial phenotype variability of MUC1 related kidney disease.


July 19, 2019  |  

Phasevarions of bacterial pathogens: Methylomics sheds new light on old enemies.

A wide variety of bacterial pathogens express phase-variable DNA methyltransferases that control expression of multiple genes via epigenetic mechanisms. These randomly switching regulons – phasevarions – regulate genes involved in pathogenesis, host adaptation, and antibiotic resistance. Individual phase-variable genes can be identified in silico as they contain easily recognized features such as simple sequence repeats (SSRs) or inverted repeats (IRs) that mediate the random switching of expression. Conversely, phasevarion-controlled genes do not contain any easily identifiable features. The study of DNA methyltransferase specificity using Single-Molecule, Real-Time (SMRT) sequencing and methylome analysis has rapidly advanced the analysis of phasevarions by allowing methylomics to be combined with whole-transcriptome/proteome analysis to comprehensively characterize these systems in a number of important bacterial pathogens. Copyright © 2018 Elsevier Ltd. All rights reserved.


July 19, 2019  |  

Unexpected diversity in the mobilome of a Pseudomonas aeruginosa strain isolated from a dental unit waterline revealed by SMRT Sequencing.

The Gram-negative bacterium Pseudomonas aeruginosa is found in several habitats, both natural and human-made, and is particularly known for its recurrent presence as a pathogen in the lungs of patients suffering from cystic fibrosis, a genetic disease. Given its clinical importance, several major studies have investigated the genomic adaptation of P. aeruginosa in lungs and its transition as acute infections become chronic. However, our knowledge about the diversity and adaptation of the P. aeruginosa genome to non-clinical environments is still fragmentary, in part due to the lack of accurate reference genomes of strains from the numerous environments colonized by the bacterium. Here, we used PacBio long-read technology to sequence the genome of PPF-1, a strain of P. aeruginosa isolated from a dental unit waterline. Generating this closed genome was an opportunity to investigate genomic features that are difficult to accurately study in a draft genome (contigs state). It was possible to shed light on putative genomic islands, some shared with other reference genomes, new prophages, and the complete content of insertion sequences. In addition, four different group II introns were also found, including two characterized here and not listed in the specialized group II intron database.


July 19, 2019  |  

A Borrelia burgdorferi mini-vls system that undergoes antigenic switching in mice: investigation of the role of plasmid topology and the long inverted repeat.

Borrelia burgdorferi evades the host immune system by switching the surface antigen. VlsE, in a process known as antigenic variation. The DNA mechanisms and genetic elements present on the vls locus that participate in the switching process remain to be elucidated. Manipulating the vls locus has been difficult due to its instability on Escherichia coli plasmids. In this study, we generated for the first time a mini-vls system composed of a single silent vlsE variable region (silent cassette 2) through the vlsE gene by performing some cloning steps directly in a highly transformable B. burgdorferi strain. Variants of the mini system were constructed with or without the long inverted repeat (IR) located upstream of vlsE and on both circular and linear plasmids to investigate the importance of the IR and plasmid topology on recombinational switching at vlsE. Amplicon sequencing using PacBio long read technology and analysis of the data with our recently reported pipeline and VAST software showed that the system undergoes switching in mice in both linear and circular versions and that the presence of the hairpin does not seem to be crucial in the linear version, however it is required when the topology is circular.© 2018 John Wiley & Sons Ltd.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.