fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, September 22, 2019

A response to Lindsey et al. “Wolbachia pipientis should not be split into multiple species: A response to Ramírez-Puebla et al.”.

In Ramírez-Puebla et al. [18] we compared 34 Wolbachia genomes and constructed phylogenetic trees using genomic data. In general, our results were congruent with previously reported phy- logenetic trees [5,9]. Our datasets were carefully selected, checked and analyzed avoiding horizontally transferred genes. In the case of the wAna genome we did not use the raw data, but the assem- bled genome [22] and 31 genes were used to compare in a dataset of conserved proteins. To confirm our conclusions a new phyloge- nomic analysis was performed excluding the wAna strain in the dataset (Fig. 1). The same topology was obtained,…

Read More »

Sunday, September 22, 2019

Candidatus Dactylopiibacterium carminicum, a nitrogen-fixing symbiont of Dactylopius cochineal insects (Hemiptera: Coccoidea: Dactylopiidae)

The domesticated carmine cochineal Dactylopius coccus (scale insect) has commercial value and has been used for more than 500?years for natural red pigment production. Besides the domesticated cochineal, other wild Dactylopius species such as Dactylopius opuntiae are found in the Americas, all feeding on nutrient poor sap from native cacti. To compensate nutritional deficiencies, many insects harbor symbiotic bacteria which provide essential amino acids or vitamins to their hosts. Here, we characterized a symbiont from the carmine cochineal insects, Candidatus Dactylopiibacterium carminicum (betaproteobacterium, Rhodocyclaceae family) and found it in D. coccus and in D. opuntiae ovaries by fluorescent in situ…

Read More »

Sunday, September 22, 2019

Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija forest on Jeju Island.

Lignocellulose, mostly composed of cellulose, hemicellulose and lignin generated through secondary growth of woody plant, is considered as promising resources for bio-fuel. In order to use lignocellulose as a biofuel, the biodegradation besides high-cost chemical treatments were applied, but its knowledge on decomposition of lignocellulose occurring in a natural environment were insufficient. We analyzed 16S rRNA gene and metagenome to understand how the lignocellulose are decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes…

Read More »

Sunday, September 22, 2019

Research benefits of storing genitourinary samples: 16S rRNA sequencing to evaluate vaginal bacterial communities.

Using well-characterised, but old and carefully frozen genital tract research samples may be a cost-effective way of performing metagenomic studies, but risks loss of low abundance (but relevant) bacterial species DNA. Moi et al.1 used 16S rRNA and UreDNA sequencing to detect ureaplasmas in frozen urine samples collected from 362 men with NGU in 2010–2011. They found that urethral inflammatory responses to ureaplasmas were less severe than to Chlamydia trachomatis and Mycoplasma genitalium.

Read More »

Sunday, September 22, 2019

A community-based culture collection for targeting novel plant growth-promoting bacteria from the sugarcane microbiome.

The soil-plant ecosystem harbors an immense microbial diversity that challenges investigative approaches to study traits underlying plant-microbe association. Studies solely based on culture-dependent techniques have overlooked most microbial diversity. Here we describe the concomitant use of culture-dependent and -independent techniques to target plant-beneficial microbial groups from the sugarcane microbiome. The community-based culture collection (CBC) approach was used to access microbes from roots and stalks. The CBC recovered 399 unique bacteria representing 15.9% of the rhizosphere core microbiome and 61.6-65.3% of the endophytic core microbiomes of stalks. By cross-referencing the CBC (culture-dependent) with the sugarcane microbiome profile (culture-independent), we designed a…

Read More »

Sunday, September 22, 2019

Analyses of intestinal microbiota: culture versus sequencing.

Analyzing human as well as animal microbiota composition has gained growing interest because structural components and metabolites of microorganisms fundamentally influence all aspects of host physiology. Originally dominated by culture-dependent methods for exploring these ecosystems, the development of molecular techniques such as high throughput sequencing has dramatically increased our knowledge. Because many studies of the microbiota are based on the bacterial 16S ribosomal RNA (rRNA) gene targets, they can, at least in principle, be compared to determine the role of the microbiome composition for developmental processes, host metabolism, and physiology as well as different diseases. In our review, we will…

Read More »

Sunday, September 22, 2019

The human microbiome and understanding the 16S rRNA gene in translational nursing science.

As more is understood regarding the human microbiome, it is increasingly important for nurse scientists and healthcare practitioners to analyze these microbial communities and their role in health and disease. 16S rRNA sequencing is a key methodology in identifying these bacterial populations that has recently transitioned from use primarily in research to having increased utility in clinical settings.The objectives of this review are to (a) describe 16S rRNA sequencing and its role in answering research questions important to nursing science; (b) provide an overview of the oral, lung, and gut microbiomes and relevant research; and (c) identify future implications for…

Read More »

Sunday, September 22, 2019

The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen.

We have explored the importance of the phyllosphere microbiome in plant resistance in the cuticle mutants bdg (BODYGUARD) or lacs2.3 (LONG CHAIN FATTY ACID SYNTHASE 2) that are strongly resistant to the fungal pathogen Botrytis cinerea. The study includes infection of plants under sterile conditions, 16S ribosomal DNA sequencing of the phyllosphere microbiome, and isolation and high coverage sequencing of bacteria from the phyllosphere. When inoculated under sterile conditions bdg became as susceptible as wild-type (WT) plants whereas lacs2.3 mutants retained the resistance. Adding washes of its phyllosphere microbiome could restore the resistance of bdg mutants, whereas the resistance of…

Read More »

Sunday, September 22, 2019

Melanization of mycorrhizal fungal necromass structures microbial decomposer communities

Mycorrhizal fungal necromass is increasingly recognized as an important contributor to soil organic carbon pools, particularly in forest ecosystems. While its decomposition rate is primarily determined by biochemical composition, how traits such as melanin content affect the structure of necromass decomposer communities remains poorly understood. To assess the role of biochemical traits on microbial decomposer community composition and functioning, we incubated melanized and non-melanized necromass of the mycorrhizal fungus Meliniomyces bicolor in Pinus- and Quercus-dominated forests in Minnesota, USA and then assessed the associated fungal and bacterial decomposer communities after 1, 2 and 3 months using high-throughput sequencing. Melanized necromass…

Read More »

Sunday, September 22, 2019

Recent developments in using advanced sequencing technologies for the genomic studies of lignin and cellulose degrading microorganisms.

Lignin is a complex polyphenyl aromatic compound which exists in tight associations with cellulose and hemicellulose to form plant primary and secondary cell wall. Lignocellulose is an abundant renewable biomaterial present on the earth. It has gained much attention in the scientific community in recent years because of its potential applications in bio-based industries. Microbial degradation of lignocellulose polymers was well studied in wood decaying fungi. Based on the plant materials they degrade these fungi were classified as white rot, brown rot and soft rot. However, some groups of bacteria belonging to the actinomycetes, a-proteobacteria and ß-proteobacteria were also found…

Read More »

Sunday, September 22, 2019

Metagenomic approaches to assess bacteriophages in various environmental niches.

Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral ‘dark matter’ of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this…

Read More »

Sunday, September 22, 2019

Different next generation sequencing platforms produce different microbial profiles and diversity in cystic fibrosis sputum.

Cystic fibrosis (CF) is an autosomal recessive disease characterized by recurrent lung infections. Studies of the lung microbiome have shown an association between decreasing diversity and progressive disease. 454 pyrosequencing has frequently been used to study the lung microbiome in CF, but will no longer be supported. We sought to identify the benefits and drawbacks of using two state-of-the-art next generation sequencing (NGS) platforms, MiSeq and PacBio RSII, to characterize the CF lung microbiome. Each has its advantages and limitations.Twelve samples of extracted bacterial DNA were sequenced on both MiSeq and PacBio NGS platforms. DNA was amplified for the V4…

Read More »

Sunday, September 22, 2019

Multiplex amplicon sequencing for microbe identification in community-based culture collections.

Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple…

Read More »

Sunday, September 22, 2019

Nasopharyngeal microbiome in premature infants and stability during rhinovirus infection.

The nasopharyngeal (NP) microbiota of newborns and infants plays a key role in modulating airway inflammation and respiratory symptoms during viral infections. Premature (PM) birth modifies the early NP environment and is a major risk factor for severe viral respiratory infections. However, it is currently unknown if the NP microbiota of PM infants is altered relative to full-term (FT) individuals.To characterize the NP microbiota differences in preterm and FT infants during rhinovirus (RV) infection.We determined the NP microbiota of infants 6 months to =2 years of age born FT (n=6) or severely PM

Read More »

Sunday, September 22, 2019

Bacterial microbiota of Kazakhstan cheese revealed by single molecule real time (SMRT) sequencing and its comparison with Belgian, Kalmykian and Italian artisanal cheeses

In Kazakhstan, traditional artisanal cheeses have a long history and are widely consumed. The unique characteristics of local artisanal cheeses are almost completely preserved. However, their microbial communities have rarely been reported. The current study firstly generated the Single Molecule, Real-Time (SMRT) sequencing bacterial diversity profiles of 6 traditional artisanal cheese samples of Kazakhstan origin, followed by comparatively analyzed the microbiota composition between the current dataset and those from cheeses originated from Belgium, Russian Republic of Kalmykia (Kalmykia) and Italy.

Read More »

1 2 3 4 5 16

Subscribe for blog updates:

Archives