Menu
July 7, 2019  |  

Complete genome sequence of the environmental Burkholderia pseudomallei sequence type 131 isolate MSHR1435, associated with a chronic melioidosis infection.

The Burkholderia pseudomallei isolate MSHR1435 is a fully virulent environmental sequence type 131 (ST131) isolate that is epidemiologically associated with a 17.5-year chronic melioidosis infection. The completed genome will serve as a reference for studies of environmental ecology, virulence, and chronic B. pseudomallei infections. Copyright © 2018 Sahl et al.


July 7, 2019  |  

Short genome report of cellulose-producing commensal Escherichia coli 1094.

Bacterial surface colonization and biofilm formation often rely on the production of an extracellular polymeric matrix that mediates cell-cell and cell-surface contacts. In Escherichia coli and many Betaproteobacteria and Gammaproteobacteria cellulose is often the main component of the extracellular matrix. Here we report the complete genome sequence of the cellulose producing strain E. coli 1094 and compare it with five other closely related genomes within E. coli phylogenetic group A. We present a comparative analysis of the regions encoding genes responsible for cellulose biosynthesis and discuss the changes that could have led to the loss of this important adaptive advantage in several E. coli strains. Data deposition: The annotated genome sequence has been deposited at the European Nucleotide Archive under the accession number PRJEB21000.


July 7, 2019  |  

Analysis of resistance genes of clinical Pannonibacter phragmitetus strain 31801 by complete genome sequencing.

To clarify the resistance mechanisms of Pannonibacter phragmitetus 31801, isolated from the blood of a liver abscess patient, at the genomic level, we performed whole genomic sequencing using a PacBio RS II single-molecule real-time long-read sequencer. Bioinformatic analysis of the resulting sequence was then carried out to identify any possible resistance genes. Analyses included Basic Local Alignment Search Tool searches against the Antibiotic Resistance Genes Database, ResFinder analysis of the genome sequence, and Resistance Gene Identifier analysis within the Comprehensive Antibiotic Resistance Database. Prophages, clustered regularly interspaced short palindromic repeats (CRISPR), and other putative virulence factors were also identified using PHAST, CRISPRfinder, and the Virulence Factors Database, respectively. The circular chromosome and single plasmid of P. phragmitetus 31801 contained multiple antibiotic resistance genes, including those coding for three different types of ß-lactamase [NPS ß-lactamase (EC 3.5.2.6), ß-lactamase class C, and a metal-dependent hydrolase of ß-lactamase superfamily I]. In addition, genes coding for subunits of several multidrug-resistance efflux pumps were identified, including those targeting macrolides (adeJ, cmeB), tetracycline (acrB, adeAB), fluoroquinolones (acrF, ceoB), and aminoglycosides (acrD, amrB, ceoB, mexY, smeB). However, apart from the tripartite macrolide efflux pump macAB-tolC, the genome did not appear to contain the complete complement of subunit genes required for production of most of the major multidrug-resistance efflux pumps.


July 7, 2019  |  

Complete genome sequence of Achromobacter spanius type strain DSM 23806T, a pathogen isolated from human blood.

Achromobacter spanius is a newly described, non-fermenting, Gram-negative, coccoid pathogen isolated from human blood. Whole-genome sequencing of the A. spanius type strain was performed to investigate the mechanism of pathogenesis of this strain at a genomic level.The complete genome of A. spanius type strain DSM 23806T was sequenced using single-molecule real-time (SMRT) DNA sequencing.The complete genome of DSM 23806T consists of one circular DNA chromosome of 6425783bp with a G+C content of 64.26%. The entire genome contains 5804 predicted coding sequences (CDS) and 55 tRNAs. Genomic island (GI) analysis showed that this strain encodes several important pathogenesis- and resistance-related genes.These results strongly suggest that GIs provide some fitness advantages in A. spanius type strain DSM 23806T. This report provides an extensive understanding of A. spanius at a genomic level as well as an understanding of the evolution of A. spanius. Copyright © 2018 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.


July 7, 2019  |  

Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic Rhizobia.

Rhizobia are a paraphyletic group of soil-borne bacteria that induce nodule organogenesis in legume roots and fix atmospheric nitrogen for plant growth. In non-leguminous plants, species from the Rhizobiales order define a core lineage of the plant microbiota, suggesting additional functional interactions with plant hosts. In this work, genome analyses of 1,314 Rhizobiales isolates along with amplicon studies of the root microbiota reveal the evolutionary history of nitrogen-fixing symbiosis in this bacterial order. Key symbiosis genes were acquired multiple times, and the most recent common ancestor could colonize roots of a broad host range. In addition, root growth promotion is a characteristic trait of Rhizobiales in Arabidopsis thaliana, whereas interference with plant immunity constitutes a separate, strain-specific phenotype of root commensal Alphaproteobacteria. Additional studies with a tripartite gnotobiotic plant system reveal that these traits operate in a modular fashion and thus might be relevant to microbial homeostasis in healthy roots. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.


July 7, 2019  |  

High- quality draft genome sequences of eight bacteria isolated from fungus gardens grown by Trachymyrmex septentrionalis ants.

For their food source, Trachymyrmex septentrionalis ants raise symbiotic fungus gardens that contain bacteria whose functions are poorly understood. Here, we report the genome sequences of eight bacteria isolated from these fungus gardens to better describe the ecology of these strains and their potential to produce secondary metabolites in this niche.


July 7, 2019  |  

Characterization and genome analysis of a phthalate esters-degrading strain Sphingobium yanoikuyae SHJ.

A bacterium capable of utilizing dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and diisobuthyl phthalate (DIBP) as the sole carbon and energy source was isolated from shallow aquifer sediments. The strain was identified as Sphingobium yanoikuyae SHJ based on morphological characteristics, 16S rDNA gene phylogeny, and whole genome average nucleotide identity (ANI). The degradation half-life of DBP with substrate concentration of 8.5 and 50.0 mg/L by strain SHJ was 99.7 and 101.4 hours, respectively. The optimum degradation rate of DBP by SHJ was observed at 30°C and weak alkaline (pH 7.5). Genome sequence of the strain SHJ showed a circular chromosome and additional two circular plasmids with whole genome size of 5,669,383 bp and GC content of 64.23%. Functional annotation of SHJ revealed a total of 5,402 genes, with 5,183 protein-encoding genes, 143 pseudogenes, and 76 noncoding RNA genes. Based on genome annotation, 44 genes were identified to be involved in PAEs hydrolysis potentially. Besides, a region with size of about 6.9 kb comprised of seven ORFs, which is located on the smaller plasmid pSES189, was presumed to be responsible for the biodegradation of phthalate. These results provide insights into the genetic basis of DBP biodegradation in this strain.


July 7, 2019  |  

Complete genome sequence of Agrobacterium pusense VsBac-Y9, a bacterial symbiont of the dark septate endophytic fungus Veronaeopsis simplex Y34 with potential for improving fungal colonization in roots.

A Rhizobium-related bacterium (Rhizobium sp. VsBac-Y9) is a symbiont living with the dark septate endophytic (DSE) fungus Veronaeopsis simplex Y34. Co-inoculation of Rhizobium sp. VsBac-Y9 with V. simplex Y34 improves the fungal colonization of tomato roots, resulting in a significant increase in aboveground biomass. This study sequenced the complete genome of this V. simplex-helper bacterium using the PacBio and Illumina MiSeq platforms. Hybrid assembly using SPAdes outputted a circular chromosome, a linear chromid, and a circular plasmid for a total genome 5,321,211 bp in size with a G?+?C content of 59.2%. Analysis of concatenated housekeeping genes (atpD-dnaK-groEL-lepA-recA-rpoB-thrE) and calculation of average nucleotide identity, showed that VsBac-Y9 was affiliated with the species Agrobacterium pusense (syn. Rhizobium pusense). Genome analysis revealed that A. pusense VsBac-Y9 contains a series of genes responsible for the host interactions with both fungus and plant. Such genomic information will provide new insights into developing co-inoculants of endophytic fungus and its symbiotic bacterium in future agricultural innovation. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


July 7, 2019  |  

The complete genomic sequence of a novel cold-adapted bacterium, Planococcus maritimus Y42, isolated from crude oil-contaminated soil.

Planococcus maritimus Y42, isolated from the petroleum-contaminated soil of the Qaidam Basin, can use crude oil as its sole source of carbon and energy at 20 °C. The genome of P. maritimus strain Y42 has been sequenced to provide information on its properties. Genomic analysis shows that the genome of strain Y42 contains one circular DNA chromosome with a size of 3,718,896 bp and a GC content of 48.8%, and three plasmids (329,482; 89,073; and 12,282 bp). Although the strain Y42 did not show a remarkably higher ability in degrading crude oil than other oil-degrading bacteria, the existence of strain Y42 played a significant role to reducing the overall environmental impact as an indigenous oil-degrading bacterium. In addition, genome annotation revealed that strain Y42 has many genes responsible for hydrocarbon degradation. Structural features of the genomes might provide a competitive edge for P. maritimus strain Y42 to survive in oil-polluted environments and be worthy of further study in oil degradation for the recovery of crude oil-polluted environments.


July 7, 2019  |  

Genome analysis of Vallitalea guaymasensis strain L81 isolated from a deep-sea hydrothermal vent system.

Abyssivirga alkaniphila strain L81T, recently isolated from a black smoker biofilm at the Loki’s Castle hydrothermal vent field, was previously described as a mesophilic, obligately anaerobic heterotroph able to ferment carbohydrates, peptides, and aliphatic hydrocarbons. The strain was classified as a new genus within the family Lachnospiraceae. Herein, its genome is analyzed and A. alkaniphila is reassigned to the genus Vallitalea as a new strain of V. guaymasensis, designated V. guaymasensis strain L81. The 6.4 Mbp genome contained 5651 protein encoding genes, whereof 4043 were given a functional prediction. Pathways for fermentation of mono-saccharides, di-saccharides, peptides, and amino acids were identified whereas a complete pathway for the fermentation of n-alkanes was not found. Growth on carbohydrates and proteinous compounds supported methane production in co-cultures with Methanoplanus limicola. Multiple confurcating hydrogen-producing hydrogenases, a putative bifurcating electron-transferring flavoprotein—butyryl-CoA dehydrogenase complex, and a Rnf-complex form a basis for the observed hydrogen-production and a putative reverse electron-transport in V. guaymasensis strain L81. Combined with the observation that n-alkanes did not support growth in co-cultures with M. limicola, it seemed more plausible that the previously observed degradation patterns of crude-oil in strain L81 are explained by unspecific activation and may represent a detoxification mechanism, representing an interesting ecological function. Genes encoding a capacity for polyketide synthesis, prophages, and resistance to antibiotics shows interactions with the co-occurring microorganisms. This study enlightens the function of the fermentative microorganisms from hydrothermal vents systems and adds valuable information on the bioprospecting potential emerging in deep-sea hydrothermal systems.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.