Menu
September 22, 2019  |  

Multiplex amplicon sequencing for microbe identification in community-based culture collections.

Microbiome analysis using metagenomic sequencing has revealed a vast microbial diversity associated with plants. Identifying the molecular functions associated with microbiome-plant interaction is a significant challenge concerning the development of microbiome-derived technologies applied to agriculture. An alternative to accelerate the discovery of the microbiome benefits to plants is to construct microbial culture collections concomitant with accessing microbial community structure and abundance. However, traditional methods of isolation, cultivation, and identification of microbes are time-consuming and expensive. Here we describe a method for identification of microbes in culture collections constructed by picking colonies from primary platings that may contain single or multiple microorganisms, which we named community-based culture collections (CBC). A multiplexing 16S rRNA gene amplicon sequencing based on two-step PCR amplifications with tagged primers for plates, rows, and columns allowed the identification of the microbial composition regardless if the well contains single or multiple microorganisms. The multiplexing system enables pooling amplicons into a single tube. The sequencing performed on the PacBio platform led to recovery near-full-length 16S rRNA gene sequences allowing accurate identification of microorganism composition in each plate well. Cross-referencing with plant microbiome structure and abundance allowed the estimation of diversity and abundance representation of microorganism in the CBC.


September 22, 2019  |  

Application of PacBio Single Molecule Real-Time (SMRT) sequencing in bacterial source tracking analysis during milk powder production

This work developed a 16S rRNA-PacBio Single Molecule Real-Time (SMRT) sequencing-based method to identify and track the bacterial community of milk powder (MP) from two kinds of production settings, i.e., small-scale production contained within an in-house environment (minimal milk storage before pasteurization, milk concentration, and spray drying) and a large-scale factory production (prolonged milk storage before direct spray drying). A total of 18 samples were analyzed at the species level. Comparing with the large-scale factory production, only relatively little changes were observed in the bacterial community during the in-house production process, without significant loss in the levels of bioactive minor proteins (namely, lactoferrin, immunoglobulin G, lactoperoxidase, and lysozyme). The two most prevalent species in the in-house production, Bacillus cereus and Bacillus flexus, were likely originated from the raw milk with only small changes in their relative abundances (from 25.97% to 26.40%–28.89% and 27.40%, respectively) throughout the processing (from raw milk to MP). In contrast, large-scale factory production resulted in more obvious variation in the microbial content. This microbial tracking approach is valuable in identifying the contamination source and the specific stage when contamination happens; the implementation of such technique may also enhance food quality assurance systems that are currently used in the dairy industry.


September 22, 2019  |  

Novel molecules lncRNAs, tRFs and circRNAs deciphered from next-generation sequencing/RNA sequencing: computational databases and tools.

Powerful next-generation sequencing (NGS) technologies, more specifically RNA sequencing (RNA-seq), have been pivotal toward the detection and analysis and hypotheses generation of novel biomolecules, long noncoding RNAs (lncRNAs), tRNA-derived fragments (tRFs) and circular RNAs (circRNAs). Experimental validation of the occurrence of these biomolecules inside the cell has been reported. Their differential expression and functionally important role in several cancers types as well as other diseases such as Alzheimer’s and cardiovascular diseases have garnered interest toward further studies in this research arena. In this review, starting from a brief relevant introduction to NGS and RNA-seq and the expression and role of lncRNAs, tRFs and circRNAs in cancer, we have comprehensively analyzed the current landscape of databases developed and computational software used for analyses and visualization for this emerging and highly interesting field of these novel biomolecules. Our review will help the end users and research investigators gain information on the existing databases and tools as well as an understanding of the specific features which these offer. This will be useful for the researchers in their proper usage thereby guiding them toward novel hypotheses generation and saving time and costs involved in extensive experimental processes in these three different novel functional RNAs.© The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.


September 22, 2019  |  

Stalking a lethal superbug by whole-genome sequencing and phylogenetics: Influence on unraveling a major hospital outbreak of carbapenem-resistant Klebsiella pneumoniae.

From July 2010-April 2013, Leipzig University Hospital experienced the largest outbreak of a Klebsiella pneumoniae carbapenemase 2 (KPC-2)-producing Klebsiella pneumoniae (KPC-2-Kp) strain observed in Germany to date. After termination of the outbreak, we aimed to reconstruct transmission pathways by phylogenetics based on whole-genome sequencing (WGS).One hundred seventeen KPC-2-Kp isolates from 89 outbreak patients, 5 environmental KPC-2-Kp isolates, and 24 K pneumoniae strains not linked to the outbreak underwent WGS. Phylogenetic analysis was performed blinded to clinical data and based on the genomic reads.A patient from Greece was confirmed as the source of the outbreak. Transmission pathways for 11 out of 89 patients (12.4%) were plausibly explained by descriptive epidemiology, applying strict definitions. Five of these and an additional 15 (ie, 20 out of 89 patients [22.5%]) were confirmed by phylogenetics. The rate of phylogenetically confirmed transmissions increased significantly from 8 out of 66 (12.1% for the time period before) to 12 out of 23 patients (52.2% for the time period after; P?<.001) after implementation of systematic screening for KPC-2-Kp (33,623 screening investigations within 11 months). Using descriptive epidemiology, systematic screening showed no significant effect (7 out of 66 [10.6%] vs 4 out of 23 [17.4%] patients; P?=?.465). The phylogenetic analysis supported the assumption that a contaminated positioning pillow served as a reservoir for the persistence of KPC-2-Kp.Effective phylogenetic identification of transmissions requires systematic microbiologic screening. Extensive screening and phylogenetic analysis based on WGS should be started as soon as possible in a bacterial outbreak situation. Copyright © 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.


September 22, 2019  |  

Pacbio sequencing of copper-tolerant Xanthomonas citri reveals presence of a chimeric plasmid structure and provides insights into reassortment and shuffling of transcription activator-like effectors among X. citri strains.

Xanthomonas citri, a causal agent of citrus canker, has been a well-studied model system due to recent availability of whole genome sequences of multiple strains from different geographical regions. Major limitations in our understanding of the evolution of pathogenicity factors in X. citri strains sequenced by short-read sequencing methods have been tracking plasmid reshuffling among strains due to inability to accurately assign reads to plasmids, and analyzing repeat regions among strains. X. citri harbors major pathogenicity determinants, including variable DNA-binding repeat region containing Transcription Activator-like Effectors (TALEs) on plasmids. The long-read sequencing method, PacBio, has allowed the ability to obtain complete and accurate sequences of TALEs in xanthomonads. We recently sequenced Xanthomonas citri str. Xc-03-1638-1-1, a copper tolerant A group strain isolated from grapefruit in 2003 from Argentina using PacBio RS II chemistry. We analyzed plasmid profiles, copy number and location of TALEs in complete genome sequences of X. citri strains.We utilized the power of long reads obtained by PacBio sequencing to enable assembly of a complete genome sequence of strain Xc-03-1638-1-1, including sequences of two plasmids, 249 kb (plasmid harboring copper resistance genes) and 99 kb (pathogenicity plasmid containing TALEs). The pathogenicity plasmid in this strain is a hybrid plasmid containing four TALEs. Due to the intriguing nature of this pathogenicity plasmid with Tn3-like transposon association, repetitive elements and multiple putative sites for origins of replication, we might expect alternative structures of this plasmid in nature, illustrating the strong adaptive potential of X. citri strains. Analysis of the pathogenicity plasmid among completely sequenced X. citri strains, coupled with Southern hybridization of the pathogenicity plasmids, revealed clues to rearrangements of plasmids and resulting reshuffling of TALEs among strains.We demonstrate in this study the importance of long-read sequencing for obtaining intact sequences of TALEs and plasmids, as well as for identifying rearrangement events including plasmid reshuffling. Rearrangement events, such as the hybrid plasmid in this case, could be a frequent phenomenon in the evolution of X. citri strains, although so far it is undetected due to the inability to obtain complete plasmid sequences with short-read sequencing methods.


September 22, 2019  |  

Translating genomics into practice for real-time surveillance and response to carbapenemase-producing Enterobacteriaceae: evidence from a complex multi-institutional KPC outbreak.

Until recently, Klebsiella pneumoniae carbapenemase (KPC)-producing Enterobacteriaceae were rarely identified in Australia. Following an increase in the number of incident cases across the state of Victoria, we undertook a real-time combined genomic and epidemiological investigation. The scope of this study included identifying risk factors and routes of transmission, and investigating the utility of genomics to enhance traditional field epidemiology for informing management of established widespread outbreaks.All KPC-producing Enterobacteriaceae isolates referred to the state reference laboratory from 2012 onwards were included. Whole-genome sequencing was performed in parallel with a detailed descriptive epidemiological investigation of each case, using Illumina sequencing on each isolate. This was complemented with PacBio long-read sequencing on selected isolates to establish high-quality reference sequences and interrogate characteristics of KPC-encoding plasmids.Initial investigations indicated that the outbreak was widespread, with 86 KPC-producing Enterobacteriaceae isolates (K. pneumoniae 92%) identified from 35 different locations across metropolitan and rural Victoria between 2012 and 2015. Initial combined analyses of the epidemiological and genomic data resolved the outbreak into distinct nosocomial transmission networks, and identified healthcare facilities at the epicentre of KPC transmission. New cases were assigned to transmission networks in real-time, allowing focussed infection control efforts. PacBio sequencing confirmed a secondary transmission network arising from inter-species plasmid transmission. Insights from Bayesian transmission inference and analyses of within-host diversity informed the development of state-wide public health and infection control guidelines, including interventions such as an intensive approach to screening contacts following new case detection to minimise unrecognised colonisation.A real-time combined epidemiological and genomic investigation proved critical to identifying and defining multiple transmission networks of KPC Enterobacteriaceae, while data from either investigation alone were inconclusive. The investigation was fundamental to informing infection control measures in real-time and the development of state-wide public health guidelines on carbapenemase-producing Enterobacteriaceae surveillance and management.


September 22, 2019  |  

Genomes of 13 domesticated and wild rice relatives highlight genetic conservation, turnover and innovation across the genus Oryza.

The genus Oryza is a model system for the study of molecular evolution over time scales ranging from a few thousand to 15 million years. Using 13 reference genomes spanning the Oryza species tree, we show that despite few large-scale chromosomal rearrangements rapid species diversification is mirrored by lineage-specific emergence and turnover of many novel elements, including transposons, and potential new coding and noncoding genes. Our study resolves controversial areas of the Oryza phylogeny, showing a complex history of introgression among different chromosomes in the young ‘AA’ subclade containing the two domesticated species. This study highlights the prevalence of functionally coupled disease resistance genes and identifies many new haplotypes of potential use for future crop protection. Finally, this study marks a milestone in modern rice research with the release of a complete long-read assembly of IR 8 ‘Miracle Rice’, which relieved famine and drove the Green Revolution in Asia 50 years ago.


September 22, 2019  |  

A hybrid-hierarchical genome assembly strategy to sequence the invasive golden mussel Limnoperna fortunei.

For more than 25 years, the golden mussel Limnoperna fortunei has aggressively invaded South American freshwaters, having travelled more than 5,000 km upstream across five countries. Along the way, the golden mussel has outcompeted native species and economically harmed aquaculture, hydroelectric powers, and ship transit. We have sequenced the complete genome of the golden mussel to understand the molecular basis of its invasiveness and search for ways to control it.We assembled the 1.6 Gb genome into 20548 scaffolds with an N50 length of 312 Kb using a hybrid and hierarchical assembly strategy from short and long DNA reads and transcriptomes. A total of 60717 coding genes were inferred from a customized transcriptome-trained AUGUSTUS run. We also compared predicted protein sets with those of complete molluscan genomes, revealing an exacerbation of protein-binding domains in L. fortunei. Conclusions: We built one of the best bivalve genome assemblies available using a cost-effective approach using Illumina pair-end, mate pair, and PacBio long reads. We expect that the continuous and careful annotation of L. fortunei’s genome will contribute to the investigation of bivalve genetics, evolution, and invasiveness, as well as to the development of biotechnological tools for aquatic pest control.© The Authors 2017. Published by Oxford University Press.


September 22, 2019  |  

Topical antibiotic use coselects for the carriage of mobile genetic elements conferring resistance to unrelated antimicrobials in Staphylococcus aureus.

Topical antibiotics, such as mupirocin and fusidic acid, are commonly used in the prevention and treatment of skin infections, particularly those caused by staphylococci. However, the widespread use of these agents is associated with increased resistance to these agents, potentially limiting their efficacy. Of particular concern is the observation that resistance to topical antibiotics is often associated with multidrug resistance, suggesting that topical antibiotics may play a role in the emergence of multidrug-resistant (MDR) strains. New Zealand (NZ) has some of the highest globally recorded rates of topical antibiotic usage and resistance. Using a combination of Pacific Biosciences single-molecule real-time (SMRT) whole-genome sequencing, Illumina short-read sequencing, and Bayesian phylogenomic modeling on 118 new multilocus sequence type 1 (ST1) communityStaphylococcus aureusisolates from New Zealand and 61 publically available international ST1 genome sequences, we demonstrate a strong correlation between the clinical introduction of topical antibiotics and the emergence of MDR ST1S. aureusWe also providein vitroexperimental evidence showing that exposure to topical antibiotics can lead to the rapid selection of MDRS. aureusisolates carrying plasmids that confer resistance to multiple unrelated antibiotics, from within a mixed population of competitor strains. These findings have important implications regarding the impact of the indiscriminate use of topical antibiotics. Copyright © 2018 Carter et al.


September 22, 2019  |  

Insights on a founder effect: the case of Xylella fastidiosa in the Salento area of Apulia, Italy

Xylella fastidiosa causing disease on different plant species has been reported in several European countries, since 2013. Based on multilocus sequence typing (MLST) results, there is evidence of repeated introductions of the pathogen in Spain and France. In contrast, in the Salento area of Apulia (Puglia) in Southern Italy, the existence of a unique Apulian MLST genotype of X. fastidiosa, causing the olive quick decline syndrome (OQDS; also referred to as “CoDiRO” or “ST53”) was proven, and this was tentatively ascribed to X. fastidiosa subsp. pauca. In order to acquire information on intra population diversity European Food Safety Authority (EFSA) has strongly called for the characterization of X. fastidiosa isolates from Apulia to produce the necessary data to better understand strain diversity and evolution. In this work, for the first time the existence of sub-variants within a set of 14 “ST53” isolates of X. fastidiosa collected from different locations was searched using DNA typing methods targeting the whole pathogen genome. Invariably, VNTR, RAPD and rep-PCR (ERIC and BOX motifs) analyses indicated that all tested isolates possessed the same genomic fingerprint, supporting the existence of predominant epidemiological strain in Apulia. To further explore the degree of clonality within this population, two isolates from two different Salento areas (Taviano and Ugento) were completely sequenced using PacBio SMRT technology. The whole genome map and sequence comparisons revealed that both isolates are nearly identical, showing less than 0.001% nucleotide diversity. However, the complete and circularized Salento-1 and Salento-2 genome sequences were different, in genome and plasmid size, from the reference strain 9a5c of X. fastidiosa subsp. pauca (from citrus), and showed a PCR-proved large genome inversion of about 1.7 Mb. Genome-wide indices ANIm and dDDH indicated that the three isolates of X. fastidiosa from Salento (Apulia, Italy), namely Salento-1, Salento-2, and De Donno, whose complete genome sequence has been recently released, share a very recent common ancestor. This highlights the importance of continuous and extensive monitoring of molecular variation of this invasive pathogen to understand evolution of adaptive traits, and the necessity for adoption of all possible measures to reduce the risk of new introductions that may augment pathogen diversity.


September 22, 2019  |  

De novo assembly and phasing of dikaryotic genomes from two isolates of Puccinia coronata f. sp. avenae, the causal agent of oat crown rust.

Oat crown rust, caused by the fungus Pucinnia coronata f. sp. avenae, is a devastating disease that impacts worldwide oat production. For much of its life cycle, P. coronata f. sp. avenae is dikaryotic, with two separate haploid nuclei that may vary in virulence genotype, highlighting the importance of understanding haplotype diversity in this species. We generated highly contiguous de novo genome assemblies of two P. coronata f. sp. avenae isolates, 12SD80 and 12NC29, from long-read sequences. In total, we assembled 603 primary contigs for 12SD80, for a total assembly length of 99.16 Mbp, and 777 primary contigs for 12NC29, for a total length of 105.25 Mbp; approximately 52% of each genome was assembled into alternate haplotypes. This revealed structural variation between haplotypes in each isolate equivalent to more than 2% of the genome size, in addition to about 260,000 and 380,000 heterozygous single-nucleotide polymorphisms in 12SD80 and 12NC29, respectively. Transcript-based annotation identified 26,796 and 28,801 coding sequences for isolates 12SD80 and 12NC29, respectively, including about 7,000 allele pairs in haplotype-phased regions. Furthermore, expression profiling revealed clusters of coexpressed secreted effector candidates, and the majority of orthologous effectors between isolates showed conservation of expression patterns. However, a small subset of orthologs showed divergence in expression, which may contribute to differences in virulence between 12SD80 and 12NC29. This study provides the first haplotype-phased reference genome for a dikaryotic rust fungus as a foundation for future studies into virulence mechanisms in P. coronata f. sp. avenaeIMPORTANCE Disease management strategies for oat crown rust are challenged by the rapid evolution of Puccinia coronata f. sp. avenae, which renders resistance genes in oat varieties ineffective. Despite the economic importance of understanding P. coronata f. sp. avenae, resources to study the molecular mechanisms underpinning pathogenicity and the emergence of new virulence traits are lacking. Such limitations are partly due to the obligate biotrophic lifestyle of P. coronata f. sp. avenae as well as the dikaryotic nature of the genome, features that are also shared with other important rust pathogens. This study reports the first release of a haplotype-phased genome assembly for a dikaryotic fungal species and demonstrates the amenability of using emerging technologies to investigate genetic diversity in populations of P. coronata f. sp. avenae. Copyright © 2018 Miller et al.


September 22, 2019  |  

Genome analysis of clinical multilocus sequence Type 11 Klebsiella pneumoniae from China.

The increasing prevalence of KPC-producing Klebsiella pneumoniae strains in clinical settings has been largely attributed to dissemination of organisms of specific multilocus sequence types, such as ST258 and ST11. Compared with the ST258 clone, which is prevalent in North America and Europe, ST11 is common in China but information regarding its genetic features remains scarce. In this study, we performed detailed genetic characterization of ST11 K. pneumoniae strains by analyzing whole-genome sequences of 58 clinical strains collected from diverse geographic locations in China. The ST11 genomes were found to be highly heterogeneous and clustered into at least three major lineages based on the patterns of single-nucleotide polymorphisms. Exhibiting five different capsular types, these ST11 strains were found to harbor multiple resistance and virulence determinants such as the blaKPC-2 gene, which encodes carbapenemase, and the yersiniabactin-associated virulence genes irp, ybt and fyu. Moreover, genes encoding the virulence factor aerobactin and the regulator of the mucoid phenotype (rmpA) were detectable in six genomes, whereas genes encoding salmochelin were found in three genomes. In conclusion, our data indicated that carriage of a wide range of resistance and virulence genes constitutes the underlying basis of the high level of prevalence of ST11 in clinical settings. Such findings provide insight into the development of novel strategies for prevention, diagnosis and treatment of K. pneumoniae infections.


September 22, 2019  |  

Pantoea ananatis genetic diversity analysis reveals limited genomic diversity as well as accessory genes correlated with onion pathogenicity.

Pantoea ananatis is a member of the family Enterobacteriaceae and an enigmatic plant pathogen with a broad host range. Although P. ananatis strains can be aggressive on onion causing foliar necrosis and onion center rot, previous genomic analysis has shown that P. ananatis lacks the primary virulence secretion systems associated with other plant pathogens. We assessed a collection of fifty P. ananatis strains collected from Georgia over three decades to determine genetic factors that correlated with onion pathogenic potential. Previous genetic analysis studies have compared strains isolated from different hosts with varying diseases potential and isolation sources. Strains varied greatly in their pathogenic potential and aggressiveness on different cultivated Allium species like onion, leek, shallot, and chive. Using multi-locus sequence analysis (MLSA) and repetitive extragenic palindrome repeat (rep)-PCR techniques, we did not observe any correlation between onion pathogenic potential and genetic diversity among strains. Whole genome sequencing and pan-genomic analysis of a sub-set of 10 strains aided in the identification of a novel series of genetic regions, likely plasmid borne, and correlating with onion pathogenicity observed on single contigs of the genetic assemblies. We named these loci Onion Virulence Regions (OVR) A-D. The OVR loci contain genes involved in redox regulation as well as pectate lyase and rhamnogalacturonase genes. Previous studies have not identified distinct genetic loci or plasmids correlating with onion foliar pathogenicity or pathogenicity on a single host pathosystem. The lack of focus on a single host system for this phytopathgenic disease necessitates the pan-genomic analysis performed in this study.


September 22, 2019  |  

Multidrug-resistant Escherichia albertii: Co-occurrence of ß-lactamase and MCR-1 encoding genes.

Escherichia albertii is an emerging member of the Enterobacteriaceae causing human and animal enteric infections. Antimicrobial resistance among enteropathogens has been reported to be increasing in the past years. The purpose of this study was to investigate antibiotic resistance and resistance genes in E. albertii isolated from Zigong city, Sichuan province, China. The susceptibility to 21 antimicrobial agents was determined by Kirby-Bauer disk diffusion method. The highest prevalence was tetracycline resistance with a rate of 62.7%, followed by resistance to nalidixic acid and streptomycin with a rate of 56.9 and 51.0%, respectively. All isolates were sensitive or intermediate susceptible to imipenem, meropenem, amoxicillin-clavulanic acid, and levofloxacin. Among 51 E. albertii isolates, 15 were extended-spectrum ß-lactamase-producing as confirmed by the double disk test. The main ß-lactamase gene groups, i.e., blaTEM, blaSHV, and blaCTX-M, were detected in17, 20, and 22 isolates, respectively. Furthermore, four colistin-resistant isolates with minimum inhibitory concentrations of 8 mg/L were identified. The colistin-resistant isolates all harbored mcr-1 and blaCTX-M-55. Genome sequencing showed that E. albertii strain SP140150 carried mcr-1 and blaCTX-M-55 in two different plasmids. This study provided significant information regarding antibiotic resistance profiles and identified the co-occurrence of ß-lactamase and MCR-1 encoding genes in E. albertii isolates.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.