Menu
July 7, 2019  |  

Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform.

Continued advancements in sequencing technologies have fueled the development of new sequencing applications and promise to flood current databases with raw data. A number of factors prevent the seamless and easy use of these data, including the breadth of project goals, the wide array of tools that individually perform fractions of any given analysis, the large number of associated software/hardware dependencies, and the detailed expertise required to perform these analyses. To address these issues, we have developed an intuitive web-based environment with a wide assortment of integrated and cutting-edge bioinformatics tools in pre-configured workflows. These workflows, coupled with the ease of use of the environment, provide even novice next-generation sequencing users with the ability to perform many complex analyses with only a few mouse clicks and, within the context of the same environment, to visualize and further interrogate their results. This bioinformatics platform is an initial attempt at Empowering the Development of Genomics Expertise (EDGE) in a wide range of applications for microbial research.© The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.


July 7, 2019  |  

Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi.

While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes.Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source.The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from the phyllosphere. Noteworthy was the strong antagonistic activity of the soil yeast C. subhashii, which had so far only been described from a clinical sample and not been studied with respect to biocontrol. Based on binary competition assays and growth analyses (e.g., on different carbon sources, growth in root exudates), C. subhashii was identified as a competitive and antagonistic soil yeast with potential as a novel biocontrol agent against plant pathogenic fungi.


July 7, 2019  |  

Complete genome sequence of Bradyrhizobium japonicum J5, isolated from a soybean nodule in Hokkaido, Japan.

Soybean bradyrhizobia form root nodules on soybean plants and symbiotically fix N2 Strain J5 is phylogenetically far from well-known representatives within the Bradyrhizobium japonicum linage. The complete genome showed the largest single chromosomal (10.1 Mb) and symbiosis island (998 kb) among complete genomes of soybean bradyrhizobia. Copyright © 2017 Kanehara and Minamisawa.


July 7, 2019  |  

Quantifying the importance of the rare biosphere for microbial community response to organic pollutants in a freshwater ecosystem.

A single liter of water contains hundreds, if not thousands, of bacterial and archaeal species, each of which typically makes up a very small fraction of the total microbial community (<0.1%), the so-called "rare biosphere." How often, and via what mechanisms, e.g., clonal amplification versus horizontal gene transfer, the rare taxa and genes contribute to microbial community response to environmental perturbations represent important unanswered questions toward better understanding the value and modeling of microbial diversity. We tested whether rare species frequently responded to changing environmental conditions by establishing 20-liter planktonic mesocosms with water from Lake Lanier (Georgia, USA) and perturbing them with organic compounds that are rarely detected in the lake, including 2,4-dichlorophenoxyacetic acid (2,4-D), 4-nitrophenol (4-NP), and caffeine. The populations of the degraders of these compounds were initially below the detection limit of quantitative PCR (qPCR) or metagenomic sequencing methods, but they increased substantially in abundance after perturbation. Sequencing of several degraders (isolates) and time-series metagenomic data sets revealed distinct cooccurring alleles of degradation genes, frequently carried on transmissible plasmids, especially for the 2,4-D mesocosms, and distinct species dominating the post-enrichment microbial communities from each replicated mesocosm. This diversity of species and genes also underlies distinct degradation profiles among replicated mesocosms. Collectively, these results supported the hypothesis that the rare biosphere can serve as a genetic reservoir, which can be frequently missed by metagenomics but enables community response to changing environmental conditions caused by organic pollutants, and they provided insights into the size of the pool of rare genes and species. IMPORTANCE A single liter of water or gram of soil contains hundreds of low-abundance bacterial and archaeal species, the so called rare biosphere. The value of this astonishing biodiversity for ecosystem functioning remains poorly understood, primarily due to the fact that microbial community analysis frequently focuses on abundant organisms. Using a combination of culture-dependent and culture-independent (metagenomics) techniques, we showed that rare taxa and genes commonly contribute to the microbial community response to organic pollutants. Our findings should have implications for future studies that aim to study the role of rare species in environmental processes, including environmental bioremediation efforts of oil spills or other contaminants. Copyright © 2017 American Society for Microbiology.


July 7, 2019  |  

Genomic changes associated with the evolutionary transition of an insect gut symbiont into a blood-borne pathogen.

The genus Bartonella comprises facultative intracellular bacteria with a unique lifestyle. After transmission by blood-sucking arthropods they colonize the erythrocytes of mammalian hosts causing acute and chronic infectious diseases. Although the pathogen-host interaction is well understood, little is known about the evolutionary origin of the infection strategy manifested by Bartonella species. Here we analyzed six genomes of Bartonella apis, a honey bee gut symbiont that to date represents the closest relative of pathogenic Bartonella species. Comparative genomics revealed that B. apis encodes a large set of vertically inherited genes for amino acid and cofactor biosynthesis and nitrogen metabolism. Most pathogenic bartonellae have lost these ancestral functions, but acquired specific virulence factors and expanded a vertically inherited gene family for harvesting cofactors from the blood. However, the deeply rooted pathogen Bartonella tamiae has retained many of the ancestral genome characteristics reflecting an evolutionary intermediate state toward a host-restricted intraerythrocytic lifestyle. Our findings suggest that the ancestor of the pathogen Bartonella was a gut symbiont of insects and that the adaptation to blood-feeding insects facilitated colonization of the mammalian bloodstream. This study highlights the importance of comparative genomics among pathogens and non-pathogenic relatives to understand disease emergence within an evolutionary-ecological framework.


July 7, 2019  |  

Phenotypic and genomic survey on organic acid utilization profile of Pseudomonas mendocina strain S5.2, a vineyard soil isolate.

Root exudates are chemical compounds that are released from living plant roots and provide significant energy, carbon, nitrogen and phosphorus sources for microbes inhabiting the rhizosphere. The exudates shape the microflora associated with the plant, as well as influences the plant health and productivity. Therefore, a better understanding of the trophic link that is established between the plant and the associated bacteria is necessary. In this study, a comprehensive survey on the utilization of grapevine and rootstock related organic acids were conducted on a vineyard soil isolate which is Pseudomonas mendocina strain S5.2. Phenotype microarray analysis has demonstrated that this strain can utilize several organic acids including lactic acid, succinic acid, malic acid, citric acid and fumaric acid as sole growth substrates. Complete genome analysis using single molecule real-time technology revealed that the genome consists of a 5,120,146 bp circular chromosome and a 252,328 bp megaplasmid. A series of genetic determinants associated with the carbon utilization signature of the strain were subsequently identified in the chromosome. Of note, the coexistence of genes encoding several iron-sulfur cluster independent isoenzymes in the genome indicated the importance of these enzymes in the events of iron deficiency. Synteny and comparative analysis have also unraveled the unique features of D-lactate dehydrogenase of strain S5.2 in the study. Collective information of this work has provided insights on the metabolic role of this strain in vineyard soil rhizosphere.


July 7, 2019  |  

Three novel species with peptidoglycan cell walls form the new genus Lacunisphaera gen. nov. in the family Opitutaceae of the verrucomicrobial subdivision 4.

The cell wall of free-living bacteria consists of peptidoglycan (PG) and is critical for maintenance of shape as dissolved solutes cause osmotic pressure and challenge cell integrity. Surprisingly, the subdivision 4 of the phylum Verrucomicrobia appears to be exceptional in this respect. Organisms of this subdivision are described to be devoid of muramic or diaminopimelic acid (DAP), usually found as components of PG in bacterial cell walls. Here we describe three novel bacterial strains from a freshwater lake, IG15(T), IG16b(T), and IG31(T), belonging to a new genus in the subdivision 4 of Verrucomicrobia which we found to possess PG as part of their cell walls. Biochemical analysis revealed the presence of DAP not only in these novel strains, but also in Opitutus terrae PB90-1(T), the closest described relative of strains IG15(T), IG16b(T), and IG31(T). Furthermore, we found that nearly all genes necessary for peptidoglycan synthesis are present in genomes of subdivision 4 members, as well as in the complete genome sequence of strain IG16b(T). In addition, we isolated and visualized PG-sacculi for strain IG16b(T). Thus, our results challenge the concept of peptidoglycan-less free-living bacteria. Our polyphasic taxonomy approach places the novel strains in a new genus within the family Opitutaceae, for which the name Lacunisphaera gen. nov. is proposed. Strain designations for IG15(T), IG16b(T) and IG31(T) are Lacunisphaera parvula sp. nov. (=DSM 26814 = LMG 29468), L. limnophila sp. nov. (=DSM 26815 = LMG 29469) and L. anatis sp. nov. (=DSM 103142 = LMG 29578) respectively, with L. limnophila IG16b(T) being the type species of the genus.


July 7, 2019  |  

One year genome evolution of Lausannevirus in allopatric versus sympatric conditions.

Amoeba-resisting microorganisms raised a great interest during the last decade. Among them, some large DNA viruses present huge genomes up to 2.5?Mb long, exceeding the size of small bacterial genomes. The rate of genome evolution in terms of mutation, deletion, and gene acquisition in these genomes is yet unknown. Given the suspected high plasticity of viral genomes, the microevolution of the 346?kb genome of Lausannevirus, a member of Megavirales, was studied. Hence, Lausannevirus was co-cultured within the amoeba Acanthamoeba castellanii over one year. Despite a low number of mutations, the virus showed a genome reduction of 3.7% after 12?months. Lausannevirus genome evolution in sympatric conditions was investigated by its co-culture with Estrella lausannensis, an obligate intracellular bacterium, in the amoeba A. castellanii during one year. Cultures were split every 3?months. Genome sequencing revealed that in these conditions both, Lausannevirus and E. lausannensis, show stable genome, presenting no major rearrangement. In fact, after one year they acquired from 2 to 7 and from 4 to 10 mutations per culture for Lausannevirus and E. lausannensis, respectively. Interestingly, different mutations in the endonuclease encoding genes of Lausannevirus were observed in different subcultures, highlighting the importance of this gene product in the replication of Lausannevirus. Conversely, mutations in E. lausannensis were mainly located in a gene encoding for a phosphoenolpyruvate-protein phosphotransferase (PtsI), implicated in sugar metabolism. Moreover, in our conditions and with our analyses we detected no horizontal gene transfer during one year of co-culture.© The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

Insights into the red algae and eukaryotic evolution from the genome of Porphyra umbilicalis (Bangiophyceae, Rhodophyta).

Porphyra umbilicalis (laver) belongs to an ancient group of red algae (Bangiophyceae), is harvested for human food, and thrives in the harsh conditions of the upper intertidal zone. Here we present the 87.7-Mbp haploid Porphyra genome (65.8% G + C content, 13,125 gene loci) and elucidate traits that inform our understanding of the biology of red algae as one of the few multicellular eukaryotic lineages. Novel features of the Porphyra genome shared by other red algae relate to the cytoskeleton, calcium signaling, the cell cycle, and stress-tolerance mechanisms including photoprotection. Cytoskeletal motor proteins in Porphyra are restricted to a small set of kinesins that appear to be the only universal cytoskeletal motors within the red algae. Dynein motors are absent, and most red algae, including Porphyra, lack myosin. This surprisingly minimal cytoskeleton offers a potential explanation for why red algal cells and multicellular structures are more limited in size than in most multicellular lineages. Additional discoveries further relating to the stress tolerance of bangiophytes include ancestral enzymes for sulfation of the hydrophilic galactan-rich cell wall, evidence for mannan synthesis that originated before the divergence of green and red algae, and a high capacity for nutrient uptake. Our analyses provide a comprehensive understanding of the red algae, which are both commercially important and have played a major role in the evolution of other algal groups through secondary endosymbioses.


July 7, 2019  |  

Complete genome sequence of Bradyrhizobium sp. ORS285, a photosynthetic strain able to establish Nod factor-dependent or Nod factor-independent symbiosis with Aeschynomene legumes.

Here, we report the complete genome sequence of Bradyrhizobium sp. strain ORS285, which is able to nodulate Aeschynomene legumes using two distinct strategies that differ in the requirement of Nod factors. The genome sequence information of this strain will help understanding of the different mechanisms of interaction of rhizobia with legumes. Copyright © 2017 Gully et al.


July 7, 2019  |  

Evolution of sphingomonad gene clusters related to pesticide catabolism revealed by genome sequence and mobilomics of Sphingobium herbicidovorans MH.

Bacterial degraders of chlorophenoxy herbicides have been isolated from various ecosystems, including pristine environments. Among these degraders, the sphingomonads constitute a prominent group that displays versatile xenobiotic-degradation capabilities. Four separate sequencing strategies were required to provide the complete sequence of the complex and plastic genome of the canonical chlorophenoxy herbicide-degrading Sphingobium herbicidovorans MH. The genome has an intricate organization of the chlorophenoxy-herbicide catabolic genes sdpA, rdpA, and cadABCD that encode the (R)- and (S)-enantiomer-specific 2,4-dichlorophenoxypropionate dioxygenases and four subunits of a Rieske non-heme iron oxygenase involved in 2-methyl-chlorophenoxyacetic acid degradation, respectively. Several major genomic rearrangements are proposed to help understand the evolution and mobility of these important genes and their genetic context. Single-strain mobilomic sequence analysis uncovered plasmids and insertion sequence-associated circular intermediates in this environmentally important bacterium and enabled the description of evolutionary models for pesticide degradation in strain MH and related organisms. The mobilome presented a complex mosaic of mobile genetic elements including four plasmids and several circular intermediate DNA molecules of insertion-sequence elements and transposons that are central to the evolution of xenobiotics degradation. Furthermore, two individual chromosomally integrated prophages were shown to excise and form free circular DNA molecules. This approach holds great potential for improving the understanding of genome plasticity, evolution, and microbial ecology.© The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


July 7, 2019  |  

An integrative strategy to identify the entire protein coding potential of prokaryotic genomes by proteogenomics.

Accurate annotation of all protein-coding sequences (CDSs) is an essential prerequisite to fully exploit the rapidly growing repertoire of completely sequenced prokaryotic genomes. However, large discrepancies among the number of CDSs annotated by different resources, missed functional short open reading frames (sORFs), and overprediction of spurious ORFs represent serious limitations. Our strategy toward accurate and complete genome annotation consolidates CDSs from multiple reference annotation resources, ab initio gene prediction algorithms and in silico ORFs (a modified six-frame translation considering alternative start codons) in an integrated proteogenomics database (iPtgxDB) that covers the entire protein-coding potential of a prokaryotic genome. By extending the PeptideClassifier concept of unambiguous peptides for prokaryotes, close to 95% of the identifiable peptides imply one distinct protein, largely simplifying downstream analysis. Searching a comprehensive Bartonella henselae proteomics data set against such an iPtgxDB allowed us to unambiguously identify novel ORFs uniquely predicted by each resource, including lipoproteins, differentially expressed and membrane-localized proteins, novel start sites and wrongly annotated pseudogenes. Most novelties were confirmed by targeted, parallel reaction monitoring mass spectrometry, including unique ORFs and single amino acid variations (SAAVs) identified in a re-sequenced laboratory strain that are not present in its reference genome. We demonstrate the general applicability of our strategy for genomes with varying GC content and distinct taxonomic origin. We release iPtgxDBs for B. henselae, Bradyrhizobium diazoefficiens and Escherichia coli and the software to generate both proteogenomics search databases and integrated annotation files that can be viewed in a genome browser for any prokaryote.© 2017 Omasits et al.; Published by Cold Spring Harbor Laboratory Press.


July 7, 2019  |  

Genomic and metagenomic analysis of microbes in a soil environment affected by the 2011 Great East Japan Earthquake tsunami.

The Great East Japan Earthquake of 2011 triggered large tsunami waves, which flooded broad areas of land along the Pacific coast of eastern Japan and changed the soil environment drastically. However, the microbial characteristics of tsunami-affected soil at the genomic level remain largely unknown. In this study, we isolated microbes from a soil sample using general low-nutrient and seawater-based media to investigate microbial characteristics in tsunami-affected soil.As expected, a greater proportion of strains isolated from the tsunami-affected soil than the unaffected soil grew in the seawater-based medium. Cultivable strains in both the general low-nutrient and seawater-based media were distributed in the genus Arthrobacter. Most importantly, whole-genome sequencing of four of the isolated Arthrobacter strains revealed independent losses of siderophore-synthesis genes from their genomes. Siderophores are low-molecular-weight, iron-chelating compounds that are secreted for iron uptake; thus, the loss of siderophore-synthesis genes indicates that these strains have adapted to environments with high-iron concentrations. Indeed, chemical analysis confirmed the investigated soil samples to be rich in iron, and culture experiments confirmed weak cultivability of some of these strains in iron-limited media. Furthermore, metagenomic analyses demonstrated over-representation of denitrification-related genes in the tsunami-affected soil sample, as well as the presence of pathogenic and marine-living genera and genes related to salt-tolerance.Collectively, the present results would provide an example of microbial characteristics of soil disturbed by the tsunami, which may give an insight into microbial adaptation to drastic environmental changes. Further analyses on microbial ecology after a tsunami are envisioned to develop a deeper understanding of the recovery processes of terrestrial microbial ecosystems.


July 7, 2019  |  

Complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, isolated from field nodules of the enigmatic wild bean Phaseolus microcarpus.

We present the complete genome sequence of Bradyrhizobium sp. strain CCGE-LA001, a nitrogen-fixing bacterium isolated from nodules of Phaseolus microcarpus. Strain CCGE-LA001 represents the first sequenced bradyrhizobial strain obtained from a wild Phaseolus sp. Its genome revealed a large and novel symbiotic island. Copyright © 2016 Servín-Garcidueñas et al.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.