April 21, 2020  |  

Microbial diversity in the tick Argas japonicus (Acari: Argasidae) with a focus on Rickettsia pathogens.

The soft tick Argas japonicus mainly infests birds and can cause human dermatitis; however, no pathogen has been identified from this tick species in China. In the present study, the microbiota in A. japonicus collected from an epidemic community was explored, and some putative Rickettsia pathogens were further characterized. The results obtained indicated that bacteria in A. japonicus were mainly ascribed to the phyla Proteobacteria, Firmicutes and Actinobacteria. At the genus level, the male A. japonicus harboured more diverse bacteria than the females and nymphs. The bacteria Alcaligenes, Pseudomonas, Rickettsia and Staphylococcus were common in nymphs and adults. The abundance of bacteria belonging to the Rickettsia genus in females and males was 7.27% and 10.42%, respectively. Furthermore, the 16S rRNA gene of Rickettsia was amplified and sequenced, and phylogenetic analysis revealed that 13 sequences were clustered with the spotted fever group rickettsiae (Rickettsia heilongjiangensis and Rickettsia japonica) and three were clustered with Rickettsia limoniae, which suggested that the characterized Rickettsia in A. japonicus were novel putative pathogens and also that the residents were at considerable risk for infection by tick-borne pathogens. © 2019 The Royal Entomological Society.

April 21, 2020  |  

Antigenic variation in the Lyme spirochete: detailed functional assessment of recombinational switching at vlsE in the JD1 strain of Borrelia burgdorferi.

Borrelia burgdorferi is a causative agent of Lyme disease and establishes long-term infection in mammalian hosts. Persistence is promoted by the VlsE antigenic variation system, which generates combinatorial diversity of VlsE through unidirectional, segmental gene conversion from an array of silent cassettes. Here we explore the variants generated by the vls system of strain JD1, which has divergent sequence and structural elements from the type strain B31, the only B. burgdorferi strain in which recombinational switching at vlsE has been studied in detail. We first completed the sequencing of the vls region in JD1, uncovering a previously unreported 114 bp inverted repeat sequence upstream of vlsE. A five-week infection of WT and SCID mice was used for PacBio long read sequencing along with our recently developed VAST pipeline to analyze recombinational switching at vlsE from 40,000 sequences comprising 226,000 inferred recombination events. We show that antigenic variation in B31 and JD1 is highly similar, despite the lack of 17 bp direct repeats in JD1, a somewhat different arrangement of the silent cassettes, divergent inverted repeat sequences and general divergence in the vls sequences. We also present data that strongly suggest that dimerization is required for in vivo functionality of VlsE. © 2018 John Wiley & Sons Ltd.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.