Menu
September 22, 2019  |  

Mutators as drivers of adaptation in Streptococcus and a risk factor for host jumps and vaccine escape

Heritable hypermutable strains deficient in DNA repair genes (mutators) facilitate microbial adaptation as they may rapidly generate beneficial mutations. Mutators deficient in mismatch (MMR) and oxidised guanine (OG) repair are abundant in clinical samples and show increased adaptive potential in experimental infection models but their role in pathoadaptation is poorly understood. Here we investigate the role of mutators in epidemiology and evolution of the broad host pathogen, Streptococcus iniae, employing 80 strains isolated globally over 40 years. We determine phylogenetic relationship among S. iniae using 10,267 non-recombinant core genome single nucleotide polymorphisms (SNPs), estimate their mutation rate by fluctuation analysis, and detect variation in major MMR (mutS, mutL, dnaN, recD2, rnhC) and OG (mutY, mutM, mutX) genes. S. iniae mutation rate phenotype and genotype are strongly associated with phylogenetic diversification and variation in major streptococcal virulence determinants (capsular polysaccharide, hemolysin, cell chain length, resistance to oxidation, and biofilm formation). Furthermore, profound changes in virulence determinants observed in mammalian isolates (atypical host) and vaccine-escape isolates found in bone (atypical tissue) of vaccinated barramundi are linked to multiple MMR and OG variants and unique mutation rates. This implies that adaptation to new host taxa, new host tissue, and to immunity of a vaccinated host is promoted by mutator strains. Our findings support the importance of mutation rate dynamics in evolution of pathogenic bacteria, in particular adaptation to a drastically different immunological setting that occurs during host jump and vaccine escape events.Importance Host immune response is a powerful selective pressure that drives diversification of pathogenic microorganisms and, ultimately, evolution of new strains. Major adaptive events in pathogen evolution, such as transmission to a new host species or infection of vaccinated hosts, require adaptation to a drastically different immune landscape. Such adaptation may be favoured by hypermutable strains (or mutators) that are defective in normal DNA repair and consequently capable of generating multiple potentially beneficial and compensatory mutations. This permits rapid adjustment of virulence and antigenicity in a new immunological setting. Here we show that mutators, through mutations in DNA repair genes and corresponding shifts in mutation rate, are associated with major diversification events and virulence evolution in the broad host-range pathogen Streptococcus iniae. We show that mutators underpin infection of vaccinated hosts, transmission to new host species and the evolution of new strains.


September 21, 2019  |  

Functional analysis of the first complete genome sequence of a multidrug resistant sequence type 2 Staphylococcus epidermidis.

Staphylococcus epidermidis is a significant opportunistic pathogen of humans. The ST2 lineage is frequently multidrug resistant and accounts for most of the clinical disease worldwide. However, there are no publically available, closed ST2 genomes and pathogenesis studies have not focused on these strains. We report the complete genome and methylome of BPH0662, a multidrug resistant, hospital adapted, ST2 S. epidermidis, and describe the correlation between resistome and phenotype, as well as demonstrate its relationship to publically available, international ST2 isolates. Furthermore, we delineate the methylome determined by the two type I restriction modification systems present in BPH0662 through heterologous expression in Escherichia coli, allowing the assignment of each system to its corresponding target recognition motif. As the first complete ST2 S. epidermidis genome, BPH0662 provides a valuable reference for future genomic studies of this clinically relevant lineage. Defining the methylome and the construction of these E. coli hosts provides the foundation for the development of molecular tools to bypass restriction modification systems in this lineage that has hitherto proven intractable.


September 21, 2019  |  

Complete genome sequence of the type strain of Macrococcus canis.

The first complete genome sequence of the recently describedMacrococcus canisspecies has been determined for the strain KM45013T(=DSM 101690T= CCOS 969T= CCUG 68920T= CCM 8748T). The strain was isolated from a dog with rhinitis and contains a putative ?-hemolysin and amecB-carrying staphylococcal cassette chromosomemecelement (SCCmecKM45013). Copyright © 2018 Gobeli Brawand et al.


September 21, 2019  |  

Characterization of multi-drug resistant Enterococcus faecalis isolated from cephalic recording chambers in research macaques (Macaca spp.).

Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6′)-aph(2″), aph(3′)-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.


September 21, 2019  |  

PacBio assembly of a Plasmodium knowlesi genome sequence with Hi-C correction and manual annotation of the SICAvar gene family.

Plasmodium knowlesi has risen in importance as a zoonotic parasite that has been causing regular episodes of malaria throughout South East Asia. The P. knowlesi genome sequence generated in 2008 highlighted and confirmed many similarities and differences in Plasmodium species, including a global view of several multigene families, such as the large SICAvar multigene family encoding the variant antigens known as the schizont-infected cell agglutination proteins. However, repetitive DNA sequences are the bane of any genome project, and this and other Plasmodium genome projects have not been immune to the gaps, rearrangements and other pitfalls created by these genomic features. Today, long-read PacBio and chromatin conformation technologies are overcoming such obstacles. Here, based on the use of these technologies, we present a highly refined de novo P. knowlesi genome sequence of the Pk1(A+) clone. This sequence and annotation, referred to as the ‘MaHPIC Pk genome sequence’, includes manual annotation of the SICAvar gene family with 136 full-length members categorized as type I or II. This sequence provides a framework that will permit a better understanding of the SICAvar repertoire, selective pressures acting on this gene family and mechanisms of antigenic variation in this species and other pathogens.


September 21, 2019  |  

Multi-Locus Variable number of tandem repeat Analysis (MLVA) of Yersinia ruckeri confirms the existence of host-specificity, geographic endemism and anthropogenic dissemination of virulent clones.

A Multi-Locus Variable number of tandem repeat Analysis (MLVA) assay was developed for epizootiological study of the internationally significant fish pathogen Yersinia ruckeri, which causes yersiniosis in salmonids. The assay involves amplification of ten Variable Number of Tandem Repeat (VNTR) loci in two five-plex PCR reactions, followed by capillary electrophoresis. A collection of 484 Y. ruckeri isolates, originating from various biological sources and collected from four continents over seven decades, was analysed. Minimum spanning tree cluster analysis of MLVA profiles separated the studied population into nine major clonal complexes, and a number of minor clusters and singletons. The major clonal complexes could be associated with host species, geographic origin and serotype. A single large clonal complex of serotype O1 isolates dominating the yersiniosis situation in international rainbow trout farming suggests anthropogenic spread of this clone, possibly related to transport of fish. Moreover, sub-clustering within this clonal complex indicates putative transmission routes and multiple biotype shift events. In contrast to the situation in rainbow trout, Y. ruckeri strains associated with disease in Atlantic salmon appear as more or less geographically isolated clonal complexes. A single complex of serotype O1 exclusive to Norway was found to be responsible for almost all major yersiniosis outbreaks in modern Norwegian salmon farming, and site-specific sub-clustering further indicates persistent colonisation of freshwater farms in Norway. Identification of genetically diverse Y. ruckeri isolates from clinically healthy fish and environmental sources also suggests the widespread existence of less virulent or avirulent strains.Importance This comprehensive population study substantially improves our understanding of the epizootiological history and nature of an internationally important fish pathogenic bacterium. The MLVA assay developed and presented represents a high-resolution typing tool particularly well suited for Yersinia ruckeri infection tracing, selection of strains for vaccine inclusion, and risk assessment. The ability of the assay to separate isolates into geographically linked and/or possibly host-specific clusters reflects its potential utility for maintenance of national biosecurity. The MLVA is internationally applicable, robust, and provides clear, unambiguous and easily interpreted results. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed from a harvested colony within a single working day. As the resulting MLVA profiles are readily portable, any Y. ruckeri strain may rapidly be placed in a global epizootiological context. Copyright © 2018 Gulla et al.


September 21, 2019  |  

Identification of a novel RASD1 somatic mutation in a USP8-mutated corticotroph adenoma.

Cushing’s disease (CD) is caused by pituitary corticotroph adenomas that secrete excess adrenocorticotropic hormone (ACTH). In these tumors, somatic mutations in the gene USP8 have been identified as recurrent and pathogenic and are the sole known molecular driver for CD. Although other somatic mutations were reported in these studies, their contribution to the pathogenesis of CD remains unexplored. No molecular drivers have been established for a large proportion of CD cases and tumor heterogeneity has not yet been investigated using genomics methods. Also, even in USP8-mutant tumors, a possibility may exist of additional contributing mutations, following a paradigm from other neoplasm types where multiple somatic alterations contribute to neoplastic transformation. The current study utilizes whole-exome discovery sequencing on the Illumina platform, followed by targeted amplicon-validation sequencing on the Pacific Biosciences platform, to interrogate the somatic mutation landscape in a corticotroph adenoma resected from a CD patient. In this USP8-mutated tumor, we identified an interesting somatic mutation in the gene RASD1, which is a component of the corticotropin-releasing hormone receptor signaling system. This finding may provide insight into a novel mechanism involving loss of feedback control to the corticotropin-releasing hormone receptor and subsequent deregulation of ACTH production in corticotroph tumors.


September 21, 2019  |  

Long-read genome sequencing identifies causal structural variation in a Mendelian disease.

PurposeCurrent clinical genomics assays primarily utilize short-read sequencing (SRS), but SRS has limited ability to evaluate repetitive regions and structural variants. Long-read sequencing (LRS) has complementary strengths, and we aimed to determine whether LRS could offer a means to identify overlooked genetic variation in patients undiagnosed by SRS.MethodsWe performed low-coverage genome LRS to identify structural variants in a patient who presented with multiple neoplasia and cardiac myxomata, in whom the results of targeted clinical testing and genome SRS were negative.ResultsThis LRS approach yielded 6,971 deletions and 6,821 insertions?>?50?bp. Filtering for variants that are absent in an unrelated control and overlap a disease gene coding exon identified three deletions and three insertions. One of these, a heterozygous 2,184?bp deletion, overlaps the first coding exon of PRKAR1A, which is implicated in autosomal dominant Carney complex. RNA sequencing demonstrated decreased PRKAR1A expression. The deletion was classified as pathogenic based on guidelines for interpretation of sequence variants.ConclusionThis first successful application of genome LRS to identify a pathogenic variant in a patient suggests that LRS has significant potential for the identification of disease-causing structural variation. Larger studies will ultimately be required to evaluate the potential clinical utility of LRS.


September 21, 2019  |  

Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements.

CRISPR-Cas9 is poised to become the gene editing tool of choice in clinical contexts. Thus far, exploration of Cas9-induced genetic alterations has been limited to the immediate vicinity of the target site and distal off-target sequences, leading to the conclusion that CRISPR-Cas9 was reasonably specific. Here we report significant on-target mutagenesis, such as large deletions and more complex genomic rearrangements at the targeted sites in mouse embryonic stem cells, mouse hematopoietic progenitors and a human differentiated cell line. Using long-read sequencing and long-range PCR genotyping, we show that DNA breaks introduced by single-guide RNA/Cas9 frequently resolved into deletions extending over many kilobases. Furthermore, lesions distal to the cut site and crossover events were identified. The observed genomic damage in mitotically active cells caused by CRISPR-Cas9 editing may have pathogenic consequences.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.