Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent…
Assessment of genome-wide variation revealed regions of the genome with complex, structurally diverse haplotypes that are insufficiently represented in the human reference genome. The 17q21.31 region is one of the most dynamic and complex regions of the human genome. Different haplotypes exist, in direct and inverted orientation, showing evidence of positive selection and predisposing to microdeletion associated with mental retardation. Sequencing of different haplotypes is extremely important to characterize the spectrum of structural variation at this locus. However, de novo assembly with second-generation sequencing reads is still problematic. Using PacBio technology we have sequenced and de novo assembled a tiling…
In today’s clinical diagnostic laboratories, the detection of the disease causing mutations is either done through genotyping or Sanger sequencing. Whether done singly or in a multiplex assay, genotyping works only if the exact molecular change is known. Sanger sequencing is the gold standard method that captures both known and novel molecular changes in the disease gene of interest. Most clinical Sanger sequencing assays involve PCR-amplifying the coding sequences of the disease target gene followed by bi-directional sequencing of the amplified products. Therefore for every patient sample, one generates multiple amplicons singly and each amplicon leads to two separate sequencing…
The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data…
Drought is responsible for much of the global losses in crop yields and understanding how plants naturally cope with drought stress is essential for breeding and engineering crops for the changing climate. Resurrection plants desiccate to complete dryness during times of drought, then “come back to life” once water is available making them an excellent model for studying drought tolerance. Understanding the molecular networks governing how resurrection plants handle desiccation will provide targets for crop engineering. Oropetium thomaeum (Oro) is a resurrection plant that also has the smallest known grass genome at 250 Mb compared to Brachypodium distachyon (300 Mb)…
Whole genome sequencing can provide comprehensive information important for determining the biochemical and genetic nature of all elements inside a genome. The high-quality genome references produced from past genome projects and advances in short-read sequencing technologies have enabled quick and cheap analysis for simple variants. However even with the focus on genome-wide resequencing for SNPs, the heritability of more than 50% of human diseases remains elusive. For non-human organisms, high-contiguity references are deficient, limiting the analysis of genomic features. The long and unbiased reads from single molecule, real-time (SMRT) Sequencing and new de novo assembly approaches have demonstrated the ability…
We have developed barcoding reagents and workflows for multiplexing amplicons or fragmented native genomic (DNA) prior to Single Molecule, Real-Time (SMRT) Sequencing. The long reads of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases (kb) of sequence. This feature is particularly useful in the context of mutational analysis or SNP confirmation, where a large number of samples are generated routinely. To validate this workflow, a set of 384 1.7-kb amplicons, each derived from variants of the Phi29 DNA polymerase gene, were barcoded during amplification, pooled, and sequenced on a single SMRT Cell. To demonstrate the applicability of…
2015 SMRT Informatics Developers Conference Presentation Slides: Adam English, from the Human Genome Sequencing Center at Baylor College of Medicine presents on the structural variation tools being developed at Baylor.
2015 SMRT Informatics Developers Conference Presentation Slides: Ali Bashir of Mount Sinai School of Medicine discussed methods for characterizing structural variation in human genomes across a variety of coverage levels.
2015 SMRT Informatics Developers Conference Presentation Slides: Gene Myers, Ph.D., Founding Director, Systems Biology Center, Max Planck Institute delivered the keynote presentation. He talked about building efficient assemblers, the importance of random error distribution in sequencing data, and resolving tricky repeats with very long reads. He also encouraged developers to release assembly modules openly, and noted that data should be straightforward to parse since sharing data interfaces is easier than sharing software interfaces.
Outside of the simplest cases (haploid, bacteria, or inbreds), genomic information is not carried in a single reference per individual, but rather has higher ploidy (n=>2) for almost all organisms. The existence of two or more highly related sequences within an individual makes it extremely difficult to build high quality, highly contiguous genome assemblies from short DNA fragments. Based on the earlier work on a polyploidy aware assembler, FALCON ( https://github.com/PacificBiosciences/FALCON) , we developed new algorithms and software (“FALCON-unzip”) for de novo haplotype reconstructions from SMRT Sequencing data. We generate two datasets for developing the algorithms and the prototype software:…
A high quality reference genome is an essential resource for plant and animal breeding and functional and evolutionary studies. The common hop (Humulus lupulus, Cannabaceae) is an economically important crop plant used to flavor and preserve beer. Its genome is large (flow cytometrybased estimates of diploid length >5.4Gb1), highly repetitive, and individual plants display high levels of heterozygosity, which make assembly of an accurate and contiguous reference genome challenging with conventional short-read methods. We present a contig assembly of Cascade Hops using PacBio long reads and the diploid genome assembler, FALCON-Unzip2. The assembly has dramatically improved contiguity and completeness over…
Human MHC class I genes HLA-A, -B, -C, and class II genes HLA -DR, -DQ, and -DP play a critical role in the immune system as primary factors responsible for organ transplant rejection. Additionally, the HLA genes are important targets for clinical and drug sensitivity research because of their direct or linkage-based association with several diseases, including cancer, and autoimmune diseases. HLA genes are highly polymorphic, and their diversity originates from exonic combinations as well as recombination events. With full-length gene sequencing, a significant increase of new alleles in the HLA database is expected, stressing the need for high-resolution sequencing.…
PacBio SMRT Sequencing is fast changing the genomics space with its long reads and high consensus sequence accuracy, providing the most comprehensive view of the genome and transcriptome. In this webinar, I will talk about the various data analysis tools available in PacBio’s data analysis suite – SMRT Link – as well as 3rd party tools available. Key applications addressed in this talk are: Genome Assemblies, Structural Variant Analysis, Long Amplicon and Targeted Sequencing, Barcoding Strategies, Iso-Seq Analysis for Full-length Transcript Sequencing
This webinar, presented by Nisha Pillai, provides an overview of amplicon sequencing to target specific regions of a genome using PacBio Single Molecule, Real-Time (SMRT) Sequencing. This session provides an overview of bioinformatics approaches for PacBio amplicon analysis including circular consensus sequencing and long amplicon analysis.