X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Evolution of a 72-kb cointegrant, conjugative multiresistance plasmid from early community-associated methicillin-resistant Staphylococcus aureus isolates.

Horizontal transfer of plasmids encoding antimicrobial-resistance and virulence determinants has been instrumental in Staphylococcus aureus evolution, including the emergence of community-associated methicillin-resistant S. aureus (CA-MRSA). In the early 1990s the first CA-MRSA isolated in Western Australia (WA), WA-5, encoded cadmium, tetracycline and penicillin-resistance genes on plasmid pWBG753 (~30 kb). WA-5 and pWBG753 appeared only briefly in WA, however, fusidic-acid-resistance plasmids related to pWBG753 were also present in the first European CA-MRSA at the time. Here we characterized a 72-kb conjugative plasmid pWBG731 present in multiresistant WA-5-like clones from the same period. pWBG731 was a cointegrant formed from pWBG753 and a…

Read More »

Tuesday, April 21, 2020

The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor.

The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have…

Read More »

Tuesday, April 21, 2020

Whole-Genome Sequence of an Isogenic Haploid Strain, Saccharomyces cerevisiae IR-2idA30(MATa), Established from the Industrial Diploid Strain IR-2.

We present the draft genome sequence of an isogenic haploid strain, IR-2idA30(MATa), established from Saccharomyces cerevisiae IR-2. Assembly of long reads and previously obtained contigs from the genome of diploid IR-2 resulted in 50 contigs, and the variations and sequencing errors were corrected by short reads. Copyright © 2019 Fujimori et al.

Read More »

Tuesday, April 21, 2020

Increased prevalence of Escherichia coli strains from food carrying blaNDM and mcr-1-bearing plasmids that structurally resemble those of clinical strains, China, 2015 to 2017.

Introduction: Emergence of resistance determinants of blaNDM and mcr-1 has undermined the antimicrobial effectiveness of the last line drugs carbapenems and colistin. Aim: This work aimed to assess the prevalence of blaNDM and mcr-1 in E. coli strains collected from food in Shenzhen, China, during the period 2015 to 2017. Methods: Multidrug-resistant E. coli strains were isolated from food samples. Plasmids encoding mcr-1 or blaNDM genes were characterised and compared with plasmids found in clinical isolates.ResultsAmong 1,166 non-repeated cephalosporin-resistant E. coli strains isolated from 2,147 food samples, 390 and 42, respectively, were resistant to colistin and meropenem, with five strains…

Read More »

Tuesday, April 21, 2020

Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of blaCTX-M Gene-Bearing Plasmids in Escherichia coli.

Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum ß-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed…

Read More »

Tuesday, April 21, 2020

Circulation of Plasmids Harboring Resistance Genes to Quinolones and/or Extended-Spectrum Cephalosporins in Multiple Salmonella enterica Serotypes from Swine in the United States.

Nontyphoidal Salmonella enterica (NTS) poses a major public health risk worldwide that is amplified by the existence of antimicrobial-resistant strains, especially those resistant to quinolones and extended-spectrum cephalosporins (ESC). Little is known on the dissemination of plasmids harboring the acquired genetic determinants that confer resistance to these antimicrobials across NTS serotypes from livestock in the United States. NTS isolates (n?=?183) from U.S. swine clinical cases retrieved during 2014 to 2016 were selected for sequencing based on their phenotypic resistance to enrofloxacin (quinolone) or ceftiofur (3rd-generation cephalosporin). De novo assemblies were used to identify chromosomal mutations and acquired antimicrobial resistance genes…

Read More »

Tuesday, April 21, 2020

Dynamics of Resistance Plasmids in Extended-Spectrum-ß-Lactamase-Producing Enterobacteriaceae during Postinfection Colonization.

Extended-spectrum ß-lactamase-producing Enterobacteriaceae (EPE) are a major cause of bloodstream infections, and the colonization rate of EPE in the gut microbiota of individuals lacking prior hospitalization or comorbidities is increasing. In this study, we performed an in-depth investigation of the temporal dynamics of EPE and their plasmids during one year by collecting fecal samples from three patients initially seeking medical care for urinary tract infections. In two of the patients, the same strain that caused the urinary tract infection (UTI) was found at all consecutive samplings from the gut microbiota, and no other EPEs were detected, while in the third…

Read More »

Tuesday, April 21, 2020

Genome-Wide Screening for Enteric Colonization Factors in Carbapenem-Resistant ST258 Klebsiella pneumoniae.

A diverse, antibiotic-naive microbiota prevents highly antibiotic-resistant microbes, including carbapenem-resistant Klebsiella pneumoniae (CR-Kp), from achieving dense colonization of the intestinal lumen. Antibiotic-mediated destruction of the microbiota leads to expansion of CR-Kp in the gut, markedly increasing the risk of bacteremia in vulnerable patients. While preventing dense colonization represents a rational approach to reduce intra- and interpatient dissemination of CR-Kp, little is known about pathogen-associated factors that enable dense growth and persistence in the intestinal lumen. To identify genetic factors essential for dense colonization of the gut by CR-Kp, we constructed a highly saturated transposon mutant library with >150,000 unique mutations…

Read More »

Tuesday, April 21, 2020

Emergence of a ST2570 Klebsiella pneumoniae isolate carrying mcr-1 and blaCTX-M-14 recovered from a bloodstream infection in China.

The worldwide emergence of the plasmid-borne colistin resistance mediated by mcr-1 gene not only extended our knowledge on colistin resistance, but also poses a serious threat to clinical and public health [1, 2]. Since its first discovery, mcr-1-carrying Enterobacteriaceae from human, animal, food, and environmental origins have been widely identified, but few mcr-1-positive clinical strains of Klebsiella pneumoniae have been reported so far, especially when associated with community-acquired infections [3, 4]. Here, we report the emergence of a colistin-resistant K. pneumoniae isolate, which belonged to a rare sporadic clone, co-carrying mcr-1 and blaCTX-M-14 genes simultaneous recovered from a community-acquired bloodstream…

Read More »

Tuesday, April 21, 2020

Transmission of ciprofloxacin resistance in Salmonella mediated by a novel type of conjugative helper plasmids.

Ciprofloxacin resistance in Salmonella has been increasingly reported due to the emergence and dissemination of multiple Plasmid-Mediated Quinolone Resistance (PMQR) determinants, which are mainly located in non-conjugative plasmids or chromosome. In this study, we aimed to depict the molecular mechanisms underlying the rare phenomenon of horizontal transfer of ciprofloxacin resistance phenotype in Salmonella by conjugation experiments, S1-PFGE and complete plasmid sequencing. Two types of non-conjugative plasmids, namely an IncX1 type carrying a qnrS1 gene, and an IncH1 plasmid carrying the oqxAB-qnrS gene, both ciprofloxacin resistance determinants in Salmonella, were recovered from two Salmonella strains. Importantly, these non-conjugative plasmids could be…

Read More »

Tuesday, April 21, 2020

Potential KPC-2 carbapenemase reservoir of environmental Aeromonas hydrophila and Aeromonas caviae isolates from the effluent of an urban wastewater treatment plant in Japan.

Aeromonas hydrophila and Aeromonas caviae adapt to saline water environments and are the most predominant Aeromonas species isolated from estuaries. Here, we isolated antimicrobial-resistant (AMR) Aeromonas strains (A. hydrophila GSH8-2 and A. caviae GSH8M-1) carrying the carabapenemase blaKPC-2 gene from a wastewater treatment plant (WWTP) effluent in Tokyo Bay (Japan) and determined their complete genome sequences. GSH8-2 and GSH8M-1 were classified as newly assigned sequence types ST558 and ST13, suggesting no supportive evidence of clonal dissemination. The strains appear to have acquired blaKPC-2 -positive IncP-6-relative plasmids (pGSH8-2 and pGSH8M-1-2) that share a common backbone with plasmids in Aeromonas sp. ASNIH3…

Read More »

Tuesday, April 21, 2020

Genetic and biochemical characterization of FRI-3, a novel variant of the Ambler class A carbapenemase FRI-1.

To characterize a new variant of the FRI class A carbapenemase isolated from an MDR clinical Enterobacter cloacae isolate.A carbapenem-resistant E. cloacae was isolated from a rectal swab from a patient in an ICU in Southern Germany. Various phenotypic tests confirmed production of a putative class A carbapenemase. The new bla gene variant, blaFRI-3, and its genetic environment were characterized by WGS. Biochemical characterization was performed by heterologous expression in Escherichia coli TOP10 and by purification of the enzyme with subsequent determination of its kinetic parameters.PCR and sequencing carried out for different class A carbapenemase genes confirmed the presence of…

Read More »

Tuesday, April 21, 2020

Characterization of NDM-5- and CTX-M-55-coproducing Escherichia coli GSH8M-2 isolated from the effluent of a wastewater treatment plant in Tokyo Bay.

New Delhi metallo-ß-lactamase (NDM)-5-producing Enterobacteriaceae have been detected in rivers, sewage, and effluents from wastewater treatment plants (WWTPs). Environmental contamination due to discharged effluents is of particular concern as NDM variants may be released into waterways, thereby posing a risk to humans. In this study, we collected effluent samples from a WWTP discharged into a canal in Tokyo Bay, Japan.Testing included the complete genome sequencing of Escherichia coli GSH8M-2 isolated from the effluent as well as a gene network analysis.The complete genome sequencing of GSH8M-2 revealed that it was an NDM-5-producing E. coli strain sequence type ST542, which carries multiple…

Read More »

Tuesday, April 21, 2020

A novel plasmid carrying carbapenem-resistant gene blaKPC-2 in Pseudomonas aeruginosa.

A carbapenem-resistant Pseudomonas aeruginosa strain PA1011 (ST463) was isolated from a patient in a surgical intensive care unit. PCR detection showed that PA1011 carried the blaKPC-2 gene. A plasmid was isolated and sequenced using the Illumina NextSeq 500 and PacBio RSII sequencing platforms. The plasmid was named pPA1011 and carried the carbapenem-resistant gene blaKPC-2. pPA1011 was a 62,793 bp in length with an average G+C content of 58.8%. It was identified as a novel plasmid and encoded a novel genetic environment of blaKPC-2 gene (?IS6-Tn3-ISKpn8-blaKPC-2-ISKpn6-IS26).

Read More »

Tuesday, April 21, 2020

An African Salmonella Typhimurium ST313 sublineage with extensive drug-resistance and signatures of host adaptation.

Bloodstream infections by Salmonella enterica serovar Typhimurium constitute a major health burden in sub-Saharan Africa (SSA). These invasive non-typhoidal (iNTS) infections are dominated by isolates of the antibiotic resistance-associated sequence type (ST) 313. Here, we report emergence of ST313 sublineage II.1 in the Democratic Republic of the Congo. Sublineage II.1 exhibits extensive drug resistance, involving a combination of multidrug resistance, extended spectrum ß-lactamase production and azithromycin resistance. ST313 lineage II.1 isolates harbour an IncHI2 plasmid we name pSTm-ST313-II.1, with one isolate also exhibiting decreased ciprofloxacin susceptibility. Whole genome sequencing reveals that ST313 II.1 isolates have accumulated genetic signatures potentially associated with…

Read More »

1 2

Subscribe for blog updates:

Archives