Menu
July 7, 2019  |  

Draft genome sequence of Deinococcus koreensis SJW1-2T, a gamma radiation-resistant bacterium isolated from river water.

Deinococcus koreensis SJW1-2Twas isolated from river water and was observed to be highly resistant to gamma radiation. In this study, we report a draft genome sequence which revealed that SJW1-2Tpossesses genes involved in nucleo- tide excision repair. The primary genomic information will aid in elucidating the DNA repair mechanism during ionizing radiation.


July 7, 2019  |  

Complete genome sequence of Rhizobium sp. strain 11515TR, isolated from tomato rhizosphere in the Philippines.

Rhizobium sp. strain 11515TR was isolated from the rhizosphere of to- mato in Laguna, Philippines. The 7.07-Mb complete genome comprises three repli- cons, one chromosome, and two plasmids, with a G?C content of 59.4% and 6,720 protein-coding genes. The genome encodes gene clusters supporting rhizosphere processes, plant symbiosis, and secondary bioactive metabolites.


July 7, 2019  |  

Near- complete genome sequences of Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines.

Streptomyces sp. strains AC1-42T and AC1-42W, isolated from bat guano from Cabalyorisa Cave, Mabini, Pangasinan, Philippines, are active against Bacillus subtilis subsp. subtilis KCTC 3135T. The near-complete genome sequences reported here represent a possible source of ribosomally synthesized, posttranslationally mod- ified peptides, such as lantipeptides, bacteriocins, linaridin, and a lasso peptide.


July 7, 2019  |  

Rationally designed perturbation factor drives evolution in Saccharomyces cerevisiae for industrial application.

Saccharomyces cerevisiae strains with favorable characteristics are preferred for application in industries. However, the current ability to reprogram a yeast cell on the genome scale is limited due to the complexity of yeast ploids. In this study, a method named genome replication engineering-assisted continuous evolution (GREACE) was proved efficient in engineering S. cerevisiae with different ploids. Through iterative cycles of culture coupled with selection, GREACE could continuously improve the target traits of yeast by accumulating beneficial genetic modification in genome. The application of GREACE greatly improved the tolerance of yeast against acetic acid compared with their parent strain. This method could also be employed to improve yeast aroma profile and the phenotype could be stably inherited to the offspring. Therefore, GREACE method was efficient in S. cerevisiae engineering and it could be further used to evolve yeast with other specific characteristics.


July 7, 2019  |  

Complete genome sequence of Lactococcus lactis subsp. lactis SLPE1-3, a novel lactic acid bacterium causing postharvest decay of the mushroom Pleurotus eryngii

Lactococcus lactis subsp. lactis is a pathogenic bacterium causing postharvest decay of the cultivated mushroom Pleurotus eryngii, whose pathogenic mechanism is little known. Sequencing of its complete genome is a prerequisite for revealing the molecular mechanism of infection. In this research, the complete genome of SLPE1-3 was obtained using the Single Molecular Real Time (SMRT) sequencing strategy. The genome was analyzed both structurally and functionally. The complete genome of SLPE1-3 consists of a single, circular chromosome (2,522,493 bp; 34.91% GC content) without any plasmid. The results showed the feasibility and superiority of SMRT in bacterial complete-genome research. The genome of SLPE1-3 has the specific features of L. lactis subsp. lactis not just in the phylogenesis and genome structure, but also in functional classification. Compared with L. lactis subsp. lactis IL1403, L. lactis subsp. cremoris MG1363 and L. lactis subsp. lactis KF147, 23 peculiar genes were identified in SLPE1-3 which were involved in lipid metabolism, cell wall biogenesis and some functional enzymes. In addition, 37 potential genes relating to antifungal function were filtered for further mechanism research.


July 7, 2019  |  

Genome resequencing and analysis of d-lactic acid fermentation ability of Leuconostoc mesenteroides subsp. mesenteroides ATCC 8293

Genome resequencing of D-lactic acid-producing Leuconostoc mesenteroides ATCC 8293 revealed 28 base errors in the version published in the 2017. Based on the revised genome annotation, four genes encoding putative D- lactate dehydrogenases were identified. The transcriptional expression of each gene was analyzed at different growth phases and the functionality of each gene was studied in Escherichia coli. Bioreactor studies indicated that L. mesenteroides ATCC 8293 produced D-lactic acid and ethanol at a ratio of 1.7:1 (g/g) regardless of the glucose concentration.


July 7, 2019  |  

Genome sequence of Halomonas hydrothermalis Y2, an efficient ectoine-producer isolated from pulp mill wastewater.

Halophilic microorganisms have great potentials towards biotechnological applications. Halomonas hydrothermalis Y2 is a halotolerant and alkaliphilic strain that isolated from the Na+-rich pulp mill wastewater. The strain is dominant in the bacterial community of pulp mill wastewater and exhibits metabolic diversity in utilizing various substrates. Here we present the genome sequence of this strain, which comprises a circular chromosome 3,933,432 bp in size and a GC content of 60.2%. Diverse genes that encoding proteins for compatible solutes synthesis and transport were identified from the genome. With a complete pathway for ectoine synthesis, the strain could produce ectoine from monosodium glutamate and further partially secreted into the medium. In addition, around 20% ectoine was increased by deleting the ectoine hydroxylase (EctD). The genome sequence we report here will provide genetic information regarding adaptive mechanisms of strain Y2 to its harsh habitat, as well as facilitate exploration of metabolic strategies for diverse compatible solutes, e.g., ectoine production. Copyright © 2018 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of soil actinobacteria Streptomyces cavourensis TJ430.

A new actinobacteria Streptomyces cavourensis TJ430 was isolated from the mountain soil collected from the southwest of China. In previous study, TJ430 showed striking bactericidal activities and strong ability of antibiotic production. Here, we report complete genome of this bacterium, consisting of 7.6?Mb linear chromosome and 0.2?Mb plasmids. It was predicted 6450 genes in chromosome and 225 genes in plasmids, as well as 12 gene islands in chromosome. Abundant genes have predicted functions in antibiotic metabolism and stress resistance. A whole-genome comparison of S. cavourensis TJ430, S. coelicolor A3(2), and S. lividans 66 indicates that TJ430 has a relatively high degree of strain specificity. The 16S rRNA phylogenetic tree shows the high identities (99.79%) of TJ430 with S. cavourensis DSM40300. TJ430 is a new and rare Streptomyces species, and analysis of its genome helps us to better understand primary metabolism mechanism of this isolate, as well as the evolutionary biology.© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


July 7, 2019  |  

Traditional Norwegian kveik are a genetically distinct group of domesticated Saccharomyces cerevisiae brewing yeasts.

The widespread production of fermented food and beverages has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a farmhouse brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavor negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are reportedly high-temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>28°C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, whole genome sequencing of selected strains, phenotypic screens, and lab-scale fermentations. Phylogenetic analysis suggests that kveik yeasts form a distinct group among beer yeasts. Additionally, we identify a novel POF- loss-of-function mutation, as well as SNPs and CNVs potentially relevant to the thermotolerance, high ethanol tolerance, and high fermentation rate phenotypes of kveik strains. We also identify domestication markers related to flocculation in kveik. Taken together, the results suggest that Norwegian kveik yeasts are a genetically distinct group of domesticated beer yeasts with properties highly relevant to the brewing sector.


July 7, 2019  |  

Approximate, simultaneous comparison of microbial genome architectures via syntenic anchoring of quiver representations

Motivation A long-standing limitation in comparative genomic studies is the dependency on a reference genome, which hinders the spectrum of genetic diversity that can be identified across a population of organisms. This is especially true in the microbial world where genome architectures can significantly vary. There is therefore a need for computational methods that can simultaneously analyze the architectures of multiple genomes without introducing bias from a reference. Results In this article, we present Ptolemy: a novel method for studying the diversity of genome architectures—such as structural variation and pan-genomes—across a collection of microbial assemblies without the need of a reference. Ptolemy is a ‘top-down’ approach to compare whole genome assemblies. Genomes are represented as labeled multi-directed graphs—known as quivers—which are then merged into a single, canonical quiver by identifying ‘gene anchors’ via synteny analysis. The canonical quiver represents an approximate, structural alignment of all genomes in a given collection encoding structural variation across (sub-) populations within the collection. We highlight various applications of Ptolemy by analyzing structural variation and the pan-genomes of different datasets composing of Mycobacterium, Saccharomyces, Escherichia and Shigella species. Our results show that Ptolemy is flexible and can handle both conserved and highly dynamic genome architectures. Ptolemy is user-friendly—requires only FASTA-formatted assembly along with a corresponding GFF-formatted file—and resource-friendly—can align 24 genomes in ~10 mins with four CPUs and <2 GB of RAM.


July 7, 2019  |  

Complete genome sequence of an efficient vitamin D3-hydroxylating bacterium, Pseudonocardia autotrophica NBRC 12743.

Pseudonocardia autotrophica NBRC 12743 contains a cytochrome P450 vitamin D3hydroxylase, and it is used as a biocatalyst for the commercial produc- tion of hydroxyvitamin D3, a valuable compound for medication. Here, we report the complete genome sequence of P. autotrophica NBRC 12743, which could be useful for improving the productivity of hydroxyvitamin D3.


July 7, 2019  |  

Near-complete genome sequence of Ralstonia solanacearum T523, a phylotype I tomato phytopathogen isolated from the Philippines.

Ralstonia solanacearum strain T523 is the major phytopathogen causing tomato bacterial wilt in the Philippines. Here, we report the complete chromosome and draft megaplasmid genomes with predicted gene inventories supporting rhizo- sphere processes, extensive plant virulence effectors, and the production of bioac- tive signaling metabolites, such as ralstonin, micacocidin, and homoserine lactone.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.