Menu
April 21, 2020  |  

Evolution of Antibiotic Synthesis Gene Clusters in the Streptomyces globisporus TFH56, Isolated from Tomato Flower.

Streptomyces species are known to produce various bioactive metabolites that can prevent plant diseases. Previously, the Streptomyces strain TFH56 was found to inhibit the gray mold pathogen, Botrytis cinerea, in tomato flower. In this study, the genome sequence of strain TFH56 was acquired using the Pacific Biosciences RS II platform. Three linear sequences (7.67 Mbp in total) were obtained. Based on average nucleotide identity, strain TFH56 was classified as Streptomyces globisporus, which is consistent with the presence of a linear chromosome and linear plasmids. Moreover, as with other examples of S. globisporus, the genome of strain TFH56 included a caryolan-1-ol synthase gene, a conprimycin synthetic gene cluster, and a lidamycin synthetic gene cluster.Copyright © 2019 Cho, Kwak.


April 21, 2020  |  

Identifying the Biosynthetic Gene Cluster for Triacsins with an N-Hydroxytriazene Moiety.

Triacsins are a family of natural products having in common an N-hydroxytriazene moiety not found in any other known secondary metabolites. Though many studies have examined the biological activity of triacsins in lipid metabolism, their biosynthesis has remained unknown. Here we report the identification of the triacsin biosynthetic gene cluster in Streptomyces aureofaciens ATCC 31442. Bioinformatic analysis of the gene cluster led to the discovery of the tacrolimus producer Streptomyces tsukubaensis NRRL 18488 as a new triacsin producer. In addition to targeted gene disruption to identify necessary genes for triacsin production, stable isotope feeding was performed in vivo to advance the understanding of N-hydroxytriazene biosynthesis. © 2019 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.


April 21, 2020  |  

Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723.

Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis.Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined.We describe the NRPS-t1PKS cluster ‘BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene.


April 21, 2020  |  

Comparative genomics and pathogenicity potential of members of the Pseudomonas syringae species complex on Prunus spp.

Diseases on Prunus spp. have been associated with a large number of phylogenetically different pathovars and species within the P. syringae species complex. Despite their economic significance, there is a severe lack of genomic information of these pathogens. The high phylogenetic diversity observed within strains causing disease on Prunus spp. in nature, raised the question whether other strains or species within the P. syringae species complex were potentially pathogenic on Prunus spp.To gain insight into the genomic potential of adaptation and virulence in Prunus spp., a total of twelve de novo whole genome sequences of P. syringae pathovars and species found in association with diseases on cherry (sweet, sour and ornamental-cherry) and peach were sequenced. Strains sequenced in this study covered three phylogroups and four clades. These strains were screened in vitro for pathogenicity on Prunus spp. together with additional genome sequenced strains thus covering nine out of thirteen of the currently defined P. syringae phylogroups. Pathogenicity tests revealed that most of the strains caused symptoms in vitro and no obvious link was found between presence of known virulence factors and the observed pathogenicity pattern based on comparative genomics. Non-pathogenic strains were displaying a two to three times higher generation time when grown in rich medium.In this study, the first set of complete genomes of cherry associated P. syringae strains as well as the draft genome of the quarantine peach pathogen P. syringae pv. persicae were generated. The obtained genomic data were matched with phenotypic data in order to determine factors related to pathogenicity to Prunus spp. Results of this study suggest that the inability to cause disease on Prunus spp. in vitro is not the result of host specialization but rather linked to metabolic impairments of individual strains.


April 21, 2020  |  

Direct pathway cloning of the sodorifen biosynthetic gene cluster and recombinant generation of its product in E. coli.

Serratia plymuthica WS3236 was selected for whole genome sequencing based on preliminary genetic and chemical screening indicating the presence of multiple natural product pathways. This led to the identification of a putative sodorifen biosynthetic gene cluster (BGC). The natural product sodorifen is a volatile organic compound (VOC) with an unusual polymethylated hydrocarbon bicyclic structure (C16H26) produced by selected strains of S. plymuthica. The BGC encoding sodorifen consists of four genes, two of which (sodA, sodB) are homologs of genes encoding enzymes of the non-mevalonate pathway and are thought to enhance the amounts of available farnesyl pyrophosphate (FPP), the precursor of sodorifen. Proceeding from FPP, only two enzymes are necessary to produce sodorifen: an S-adenosyl methionine dependent methyltransferase (SodC) with additional cyclisation activity and a terpene-cyclase (SodD). Previous analysis of S. plymuthica found sodorifen production titers are generally low and vary significantly among different producer strains. This precludes studies on the still elusive biological function of this structurally and biosynthetically fascinating bacterial terpene.Sequencing and mining of the S. plymuthica WS3236 genome revealed the presence of 38 BGCs according to antiSMASH analysis, including a putative sodorifen BGC. Further genome mining for sodorifen and sodorifen-like BGCs throughout bacteria was performed using SodC and SodD as queries and identified a total of 28 sod-like gene clusters. Using direct pathway cloning (DiPaC) we intercepted the 4.6 kb candidate sodorifen BGC from S. plymuthica WS3236 (sodA-D) and transformed it into Escherichia coli BL21. Heterologous expression under the control of the tetracycline inducible PtetO promoter firmly linked this BGC to sodorifen production. By utilizing this newly established expression system, we increased the production yields by approximately 26-fold when compared to the native producer. In addition, sodorifen was easily isolated in high purity by simple head-space sampling.Genome mining of all available genomes within the NCBI and JGI IMG databases led to the identification of a wealth of sod-like pathways which may be responsible for producing a range of structurally unknown sodorifen analogs. Introduction of the S. plymuthica WS3236 sodorifen BGC into the fast-growing heterologous expression host E. coli with a very low VOC background led to a significant increase in both sodorifen product yield and purity compared to the native producer. By providing a reliable, high-level production system, this study sets the stage for future investigations of the biological role and function of sodorifen and for functionally unlocking the bioinformatically identified putative sod-like pathways.


October 23, 2019  |  

Improved production of propionic acid using genome shuffling.

Traditionally derived from fossil fuels, biological production of propionic acid has recently gained interest. Propionibacterium species produce propionic acid as their main fermentation product. Production of other organic acids reduces propionic acid yield and productivity, pointing to by-products gene-knockout strategies as a logical solution to increase yield. However, removing by-product formation has seen limited success due to our inability to genetically engineer the best producing strains (i.e. Propionibacterium acidipropionici). To overcome this limitation, random mutagenesis continues to be the best path towards improving strains for biological propionic acid production. Recent advances in next generation sequencing opened new avenues to understand improved strains. In this work, we use genome shuffling on two wild type strains to generate a better propionic acid producing strain. Using next generation sequencing, we mapped the genomic changes leading to the improved phenotype. The best strain produced 25% more propionic acid than the wild type strain. Sequencing of the strains showed that genomic changes were restricted to single point mutations and gene duplications in well-conserved regions in the genomes. Such results confirm the involvement of gene conversion in genome shuffling as opposed to long genomic insertions. © 2016 The Authors. Biotechnology Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.


September 22, 2019  |  

Advantages of genome sequencing by long-read sequencer using SMRT technology in medical area.

PacBio RS II is the first commercialized third-generation DNA sequencer able to sequence a single molecule DNA in real-time without amplification. PacBio RS II’s sequencing technology is novel and unique, enabling the direct observation of DNA synthesis by DNA polymerase. PacBio RS II confers four major advantages compared to other sequencing technologies: long read lengths, high consensus accuracy, a low degree of bias, and simultaneous capability of epigenetic characterization. These advantages surmount the obstacle of sequencing genomic regions such as high/low G+C, tandem repeat, and interspersed repeat regions. Moreover, PacBio RS II is ideal for whole genome sequencing, targeted sequencing, complex population analysis, RNA sequencing, and epigenetics characterization. With PacBio RS II, we have sequenced and analyzed the genomes of many species, from viruses to humans. Herein, we summarize and review some of our key genome sequencing projects, including full-length viral sequencing, complete bacterial genome and almost-complete plant genome assemblies, and long amplicon sequencing of a disease-associated gene region. We believe that PacBio RS II is not only an effective tool for use in the basic biological sciences but also in the medical/clinical setting.


September 22, 2019  |  

Capturing natural product biosynthetic pathways from uncultivated symbiotic bacteria of marine sponges through metagenome mining: a mini-review

Symbiotic bacteria associated with marine sponges have frequently been proposed as the true producer of many bioactive natural products with potent anticancer activities. However, the majority of these complex symbiotic bacteria cannot be cultivated under laboratory conditions, hampering efforts to access and develop their potent compounds for therapeutic applications. Metagenome mining is a powerful cultivation-independent tool that can be used to search for new natural product biosynthetic pathways from highly complex bacterial consortia. Some notable examples of natural products, in which their biosynthetic pathways have been cloned by metagenome mining are onnamide A, psymberin, polytheonamides, calyculin, and misakinolide A. Subsequent expression of the pathways in easily culturable bacteria, such as Escherichia coli, could lead to the sustainable production of rare promising natural products. This review discusses principles of metagenome mining developed to gain access to natural product biosynthetic pathways from uncultured symbiotic bacteria of marine sponges. This includes detecting biosynthetic genes in sponge metagenome, creating large metagenomic library, rapid screening of metagenomic library, and clone sequencing. For many natural products made by modular polyketide synthases (PKSs) and hybrids with non-ribosomal peptide synthetases (NRPSs), their biosynthetic pathways as well as structures of final products can be predicted with high accuracy through bioinformatic analysis and sometimes combined with functional proof. Further metagenome sequencing integrated with single-cell analysis and chemical studies could provide insights into the remarkable biosynthetic capacity of uncultivated bacterial symbionts, thereby facilitating the discovery and sustainable production of a wide diversity of sponge-derived complex compounds.


September 22, 2019  |  

Complete genome sequence of Paenibacillus polymyxa YC0136, a plant growth–promoting rhizobacterium isolated from tobacco rhizosphere.

Paenibacillus polymyxa strain YC0136 is a plant growth-promoting rhizobacterium with antimicrobial activity, which was isolated from tobacco rhizosphere. Here, we report the complete genome sequence of P. polymyxa YC0136. Several genes with antifungal and antibacterial activity were discovered. Copyright © 2017 Liu et al.


September 22, 2019  |  

Antagonism between Staphylococcus epidermidis and Propionibacterium acnes and its genomic basis.

Propionibacterium acnes and Staphylococcus epidermidis live in close proximity on human skin, and both bacterial species can be isolated from normal and acne vulgaris-affected skin sites. The antagonistic interactions between the two species are poorly understood, as well as the potential significance of bacterial interferences for the skin microbiota. Here, we performed simultaneous antagonism assays to detect inhibitory activities between multiple isolates of the two species. Selected strains were sequenced to identify the genomic basis of their antimicrobial phenotypes.First, we screened 77 P. acnes strains isolated from healthy and acne-affected skin, and representing all known phylogenetic clades (I, II, and III), for their antimicrobial activities against 12?S. epidermidis isolates. One particular phylogroup (I-2) exhibited a higher antimicrobial activity than other P. acnes phylogroups. All genomes of type I-2 strains carry an island encoding the biosynthesis of a thiopeptide with possible antimicrobial activity against S. epidermidis. Second, 20?S. epidermidis isolates were examined for inhibitory activity against 25 P. acnes strains. The majority of S. epidermidis strains were able to inhibit P. acnes. Genomes of S. epidermidis strains with strong, medium and no inhibitory activities against P. acnes were sequenced. Genome comparison underlined the diversity of S. epidermidis and detected multiple clade- or strain-specific mobile genetic elements encoding a variety of functions important in antibiotic and stress resistance, biofilm formation and interbacterial competition, including bacteriocins such as epidermin. One isolate with an extraordinary antimicrobial activity against P. acnes harbors a functional ESAT-6 secretion system that might be involved in the antimicrobial activity against P. acnes via the secretion of polymorphic toxins.Taken together, our study suggests that interspecies interactions could potentially jeopardize balances in the skin microbiota. In particular, S. epidermidis strains possess an arsenal of different mechanisms to inhibit P. acnes. However, if such interactions are relevant in skin disorders such as acne vulgaris remains questionable, since no difference in the antimicrobial activity against, or the sensitivity towards S. epidermidis could be detected between health- and acne-associated strains of P. acnes.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

The microbiota of freshwater fish and freshwater niches contain omega-3 producing Shewanella species.

Approximately 30 years ago, it was discovered that free-living bacteria isolated from cold ocean depths could produce polyunsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) (20:5n-3) or docosahexaenoic acid (DHA) (22:6n-3), two PUFA essential for human health. Numerous laboratories have also discovered that EPA- and/or DHA-producing bacteria, many of them members of the Shewanella genus, could be isolated from the intestinal tracts of omega-3 fatty acid-rich marine fish. If bacteria contribute omega-3 fatty acids to the host fish in general or if they assist some bacterial species in adaptation to cold, then cold freshwater fish or habitats should also harbor these producers. Thus, we undertook a study to see if these niches also contained omega-3 fatty acid producers. We were successful in isolating and characterizing unique EPA-producing strains of Shewanella from three strictly freshwater native fish species, i.e., lake whitefish (Coregonus clupeaformis), lean lake trout (Salvelinus namaycush), and walleye (Sander vitreus), and from two other freshwater nonnative fish, i.e., coho salmon (Oncorhynchus kisutch) and seeforellen brown trout (Salmo trutta). We were also able to isolate four unique free-living strains of EPA-producing Shewanella from freshwater habitats. Phylogenetic and phenotypic analyses suggest that one producer is clearly a member of the Shewanella morhuae species and another is sister to members of the marine PUFA-producing Shewanella baltica species. However, the remaining isolates have more ambiguous relationships, sharing a common ancestor with non-PUFA-producing Shewanella putrefaciens isolates rather than marine S. baltica isolates despite having a phenotype more consistent with S. baltica strains. Copyright © 2015, American Society for Microbiology. All Rights Reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.