Menu
July 7, 2019  |  

Complete genome of Geobacter pickeringii G13T, a metal-reducing isolate from sedimentary kaolin deposits.

We used PacBio sequencing to assemble the genome of the pristine freshwater isolate Geobacter pickeringii G13(T) into a single 3,618,700-bp circular chromosome polished to 99.999% accuracy (quality value [QV], 50). This isolate shares several features with other Geobacter spp., including genes for degradation of aromatics and an abundance of multiheme c-type cytochromes. Copyright © 2015 Badalamenti and Bond.


July 7, 2019  |  

Genomes of Geoalkalibacter ferrihydriticus Z-0531Tand Geoalkalibacter subterraneus Red1T, two haloalkaliphilic metal-reducing Deltaproteobacteria.

We sequenced and annotated genomes of two haloalkaliphilic Deltaproteobacteria, Geoalkalibacter ferrihydriticus Z-0531(T) (DSM 17813) and Geoalkalibacter subterraneus Red1(T) (DSM 23483). During assembly, we discovered that the DSMZ stock culture of G. subterraneus was contaminated. We reisolated G. subterraneus in axenic culture and redeposited it in DSMZ and JCM. Copyright © 2015 Badalamenti et al.


July 7, 2019  |  

Genome sequence of Polycyclovorans algicola strain TG408, an obligate polycyclic aromatic hydrocarbon-degrading bacterium associated with marine eukaryotic phytoplankton.

Polycyclovorans algicola strain TG408 is a recently discovered bacterium associated with marine eukaryotic phytoplankton and exhibits the ability to utilize polycyclic aromatic hydrocarbons (PAHs) almost exclusively as sole sources of carbon and energy. Here, we present the genome sequence of this strain, which is 3,653,213 bp, with 3,477 genes and an average G+C content of 63.8%. Copyright © 2015 Gutierrez et al.


July 7, 2019  |  

Complete genome sequence of a novel bacterium within the family Rhodocyclaceae that degrades polycyclic aromatic hydrocarbons.

A polycyclic aromatic hydrocarbon-degrading bacterium designated strain Ca6, a member of the family Rhodocyclaceae and a representative of the uncharacterized pyrene group 1 (PG1), was isolated and its genome sequenced. The presence of several genes suspected to be associated with PG1 was confirmed, and additional genes for aromatic compound metabolism were detected. Copyright © 2015 Singleton et al.


July 7, 2019  |  

Draft genome sequence of Thauera sp. strain SWB20, isolated from a Singapore wastewater treatment facility using gel microdroplets.

We report here the genome sequence of Thauera sp. strain SWB20, isolated from a Singaporean wastewater treatment facility using gel microdroplets (GMDs) and single-cell genomics (SCG). This approach provided a single clonal microcolony that was sufficient to obtain a 4.9-Mbp genome assembly of an ecologically relevant Thauera species. Copyright © 2015 Dichosa et al.


July 7, 2019  |  

Core genome and plasmidome of the quorum-quenching bacterium Rhodococcus erythropolis.

Rhodococcus erythropolis is a worldwide-distributed actinobacterium that exhibits a remarkable metabolic versatility illustrated by its ability to degrade complex compounds, such as quorum-sensing signals N-acylhomoserine lactones (NAHLs), phenols, sterols and fuel derivatives. Because of its catabolic properties, R. erythropolis strains are proposed as anti-biofouling agents against NAHL-dependent biofilms, biocontrol agents against NAHL-emitting plant pathogens, and bioremediation agents in contaminated waters and soils. Here, we used the PacBio technology to resolve the complete genome sequence of the biocontrol strain R. erythropolis R138. Its genome consisted in a circular chromosome (6,236,862 bp), a linear plasmid pLRE138 (477,915 bp) and a circular plasmid pCRE138 (91,729 bp). In addition, draft genomes of five R. erythropolis strains were determined by Illumina technology and compared with the other five R. erythropolis genomes that are available in public databases: 5,825 common CDSs were present in all of the eleven analyzed genomes and represented up to 87 % of those identified in R. erythropolis R138. This study highlighted the high proportion of core-genome genes in R. erythropolis, but a high variability of the plasmid content. Key-metabolic pathways which are involved in the degradation of complex molecules, such as NAHLs and phenol, catechol and sterol derivatives are coded by the R. erythropolis core-genome.


July 7, 2019  |  

Complete genome sequence of oxalate-degrading bacterium Pandoraea vervacti DSM 23571(T).

Pandoraea vervacti DSM 23571(T) is an oxalate metabolizing bacterium isolated from an uncultivated field soil in Mugla, Turkey. Here, we present the first complete genome sequence of P. vervacti DSM 23571(T). A complete pathway for degradation of oxalate was revealed from the genome analysis. These data are important to path new opportunities for genetic engineering in the field of biotechnology. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence of Haloarcula sp. CBA1115 isolated from non-purified solar salts.

Haloarcula sp. CBA1115, isolated from non-purified solar salts from South Korea, is a halophilic archaeon belonging to the family Halobacteriaceae. Here, we present the complete genome sequence of the strain Haloarcula sp. CBA1115 (4,225,046bp, with a G+C content of 61.98%), which is distributed over one chromosome and five plasmids. A comparison of the genome sequence of Haloarcula sp. CBA1115 with those of members of its closely related taxa showed that the closest neighbor is Haloarcula hispanica Y27, a popular model organism for archaeal studies. The strain was found to possess a number of genes predicted to be involved in osmo-regulatory strategies and metal regulation, suggesting that it might be useful for bioremediation in extreme environments. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Draft genome sequence of Alicycliphilus sp. B1, an N-acylhomoserine lactone-producing bacterium, isolated from activated sludge.

We report here the draft genome sequence of Alicycliphilus sp. B1, isolated from activated sludge in a wastewater treatment plant of an electronic component factory as an N-acylhomoserine lactone-producing strain. The draft genome is 7,465,959 bp in length, with 59 large contigs. About 7,391 protein-coding genes, 82 tRNAs, and 13 rRNAs are predicted from this assembly. Copyright © 2015 Okutsu et al.


July 7, 2019  |  

Complete genome sequence of the petroleum-emulsifying bacterium Pseudomonas stutzeri SLG510A3-8.

Pseudomonas stutzeri SLG510A3-8, isolated from oil-contaminated soil in Shengli Oilfield, China, has the potential to be applied for microbial enhanced oil recovery. Here, we reported the complete genome sequence of this bacterium. It has a 4,650,155bp circular chromosome encoding 4450 genes, and the genome consists of genes that are involved in denitrification, chemotaxis, benzoate degradation, molecule transportation, and other functions. The genome contains a complete set of genes for type I secretion system in comparison with sequences of other P. stutzeri strains. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Genome sequence of the haloarchaeon Haloterrigena jeotgali type strain A29(T) isolated from salt-fermented food.

Haloterrigena jeotgali is a halophilic archaeon within the family Natrialbaceae that was isolated from shrimp jeotgal, a traditional Korean salt-fermented food. A29(T) is the type strain of H. jeotgali, and is a Gram-negative staining, non-motile, rod-shaped archaeon that grows in 10 %-30 % (w/v) NaCl. We present the annotated H. jeotgali A29(T) genome sequence along with a summary of its features. The 4,131,621 bp genome with a GC content of 64.9 % comprises 4,215 protein-coding genes and 127 RNA genes. The sequence can provide useful information on genetic mechanisms that enable haloarchaea to endure a hypersaline environment.


July 7, 2019  |  

Complete genome of the potential thermozyme producer Anoxybacillus gonensis G2(T) isolated from the Gönen hot springs in Turkey.

Anoxybacillus gonensis type strain G2(T) (=NCIMB 13,933(T) =NCCB 100040(T)) has been isolated from the Gönen hot springs in Turkey. This strain produces a number of well-studied, biotechnologically important enzymes, including xylose isomerase, carboxylesterase, and fructose-1,6-bisphosphate aldolase. In addition, this strain is an excellent candidate for the bioremediation of areas with heavy metal pollution. Here, we present a high-quality, annotated, complete genome of A. gonensis G2(T). Furthermore, this report provides insights into several novel enzymes of strain G2(T) and their potential industrial applications. Copyright © 2015 Elsevier B.V. All rights reserved.


July 7, 2019  |  

Complete genome sequence, metabolic model construction and phenotypic characterization of Geobacillus LC300, an extremely thermophilic, fast growing, xylose-utilizing bacterium.

We have isolated a new extremely thermophilic fast-growing Geobacillus strain that can efficiently utilize xylose, glucose, mannose and galactose for cell growth. When grown aerobically at 72°C, Geobacillus LC300 has a growth rate of 2.15h(-1) on glucose and 1.52h(-1) on xylose (doubling time less than 30min). The corresponding specific glucose and xylose utilization rates are 5.55g/g/h and 5.24g/g/h, respectively. As such, Geobacillus LC300 grows 3-times faster than E. coli on glucose and xylose, and has a specific xylose utilization rate that is 3-times higher than the best metabolically engineered organism to date. To gain more insight into the metabolism of Geobacillus LC300 its genome was sequenced using PacBio?s RS II single-molecule real-time (SMRT) sequencing platform and annotated using the RAST server. Based on the genome annotation and the measured biomass composition a core metabolic network model was constructed. To further demonstrate the biotechnological potential of this organism, Geobacillus LC300 was grown to high cell-densities in a fed-batch culture, where cells maintained a high xylose utilization rate under low dissolved oxygen concentrations. All of these characteristics make Geobacillus LC300 an attractive host for future metabolic engineering and biotechnology applications. Copyright © 2015 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.