Menu
April 21, 2020  |  

Comprehensive identification of the full-length transcripts and alternative splicing related to the secondary metabolism pathways in the tea plant (Camellia sinensis).

Flavonoids, theanine and caffeine are the main secondary metabolites of the tea plant (Camellia sinensis), which account for the tea’s unique flavor quality and health benefits. The biosynthesis pathways of these metabolites have been extensively studied at the transcriptional level, but the regulatory mechanisms are still unclear. In this study, to explore the transcriptome diversity and complexity of tea plant, PacBio Iso-Seq and RNA-seq analysis were combined to obtain full-length transcripts and to profile the changes in gene expression during the leaf development. A total of 1,388,066 reads of insert (ROI) were generated with an average length of 1,762?bp, and more than 54% (755,716) of the ROIs were full-length non-chimeric (FLNC) reads. The Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness was 92.7%. A total of 93,883 non-redundant transcripts were obtained, and 87,395 (93.1%) were new alternatively spliced isoforms. Meanwhile, 7,650 differential expression transcripts (DETs) were identified. A total of 28,980 alternative splicing (AS) events were predicted, including 1,297 differential AS (DAS) events. The transcript isoforms of the key genes involved in the flavonoid, theanine and caffeine biosynthesis pathways were characterized. Additionally, 5,777 fusion transcripts and 9,052 long non-coding RNAs (lncRNAs) were also predicted. Our results revealed that AS potentially plays a crucial role in the regulation of the secondary metabolism of the tea plant. These findings enhanced our understanding of the complexity of the secondary metabolic regulation of tea plants and provided a basis for the subsequent exploration of the regulatory mechanisms of flavonoid, theanine and caffeine biosynthesis in tea plants.


April 21, 2020  |  

The Not-so-Sterile Womb: Evidence That the Human Fetus Is Exposed to Bacteria Prior to Birth.

The human microbiome includes trillions of bacteria, many of which play a vital role in host physiology. Numerous studies have now detected bacterial DNA in first-pass meconium and amniotic fluid samples, suggesting that the human microbiome may commence in utero. However, these data have remained contentious due to underlying contamination issues. Here, we have used a previously described method for reducing contamination in microbiome workflows to determine if there is a fetal bacterial microbiome beyond the level of background contamination. We recruited 50 women undergoing non-emergency cesarean section deliveries with no evidence of intra-uterine infection and collected first-pass meconium and amniotic fluid samples. Full-length 16S rRNA gene sequencing was performed using PacBio SMRT cell technology, to allow high resolution profiling of the fetal gut and amniotic fluid bacterial microbiomes. Levels of inflammatory cytokines were measured in amniotic fluid, and levels of immunomodulatory short chain fatty acids (SCFAs) were quantified in meconium. All meconium samples and most amniotic fluid samples (36/43) contained bacterial DNA. The meconium microbiome was dominated by reads that mapped to Pelomonas puraquae. Aside from this species, the meconium microbiome was remarkably heterogeneous between patients. The amniotic fluid microbiome was more diverse and contained mainly reads that mapped to typical skin commensals, including Propionibacterium acnes and Staphylococcus spp. All meconium samples contained acetate and propionate, at ratios similar to those previously reported in infants. P. puraquae reads were inversely correlated with meconium propionate levels. Amniotic fluid cytokine levels were associated with the amniotic fluid microbiome. Our results demonstrate that bacterial DNA and SCFAs are present in utero, and have the potential to influence the developing fetal immune system.


October 23, 2019  |  

Dynamics of coral-associated microbiomes during a thermal bleaching event.

Coral-associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral-associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea-associated bacterial and algal communities throughout a natural bleaching event, using full-length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral-associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


October 23, 2019  |  

Alternative splicing profile and sex-preferential gene expression in the female and male Pacific abalone Haliotis discus hannai.

In order to characterize the female or male transcriptome of the Pacific abalone and further increase genomic resources, we sequenced the mRNA of full-length complementary DNA (cDNA) libraries derived from pooled tissues of female and male Haliotis discus hannai by employing the Iso-Seq protocol of the PacBio RSII platform. We successfully assembled whole full-length cDNA sequences and constructed a transcriptome database that included isoform information. After clustering, a total of 15,110 and 12,145 genes that coded for proteins were identified in female and male abalones, respectively. A total of 13,057 putative orthologs were retained from each transcriptome in abalones. Overall Gene Ontology terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways analyzed in each database showed a similar composition between sexes. In addition, a total of 519 and 391 isoforms were genome-widely identified with at least two isoforms from female and male transcriptome databases. We found that the number of isoforms and their alternatively spliced patterns are variable and sex-dependent. This information represents the first significant contribution to sex-preferential genomic resources of the Pacific abalone. The availability of whole female and male transcriptome database and their isoform information will be useful to improve our understanding of molecular responses and also for the analysis of population dynamics in the Pacific abalone.


September 22, 2019  |  

Cow, yak, and camel milk diets differentially modulated the systemic immunity and fecal microbiota of rats

Cow milk is most widely consumed; however, non-cattle milk has gained increasing interest because of added nutritive values. We compared the health effects of yak, cow, and camel milk in rats. By measuring several plasma immune factors, significantly more interferon-? was detected in the camel than the yak (P=0.0020) or cow (P=0.0062) milk group. Significantly more IgM was detected in the yak milk than the control group (P=0.0071). The control group had significantly less interleukin 6 than the yak (P=0.0499) and cow (P=0.0248) milk groups. The fecal microbiota of the 144 samples comprised mainly of the Firmicutes (76.70±11.03%), Bacteroidetes (15.27±7.79%), Proteobacteria (3.61±4.34%), and Tenericutes (2.61±2.53%) phyla. Multivariate analyses revealed a mild shift in the fecal microbiota along the milk treatment. We further identified the differential microbes across the four groups. At day 14, 22 and 28 differential genera and species were identified (P=0.0000–0.0462), while 8 and 11 differential genera and species (P=0.0000–0.0013) were found at day 28. Some short-chain fatty acid and succinate producers increased, while certain health-concerned bacteria (Prevotella copri, Phascolarctobacterium faecium, and Bacteroides uniformis) decreased after 14days of yak or camel milk treatment. We demonstrated that different animal milk could confer distinctive nutritive value to the host.


September 22, 2019  |  

neoantigenR: An annotation based pipeline for tumor neoantigen identification from sequencing data

Studies indicate that more than 90% of human genes are alternatively spliced, suggesting the complexity of the transcriptome assembly and analysis. The splicing process is often disrupted, resulting in both functional and non-functional end-products (Sveen et al. 2016) in many cancers. Harnessing the immune system to fight against malignant cancers carrying aberrantly mutated or spliced products is becoming a promising approach to cancer therapy. Advances in immune checkpoint blockade have elicited adaptive immune responses with promising clinical responses to treatments against human malignancies (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Emerging data suggest that recognition of patient-specific mutation-associated cancer antigens (i.e. from alternative splicing isoforms) may allow scientists to dissect the immune response in the activity of clinical immunotherapies (Schumacher and Schreiber 2015). The advent of high-throughput sequencing technology has provided a comprehensive view of both splicing aberrations and somatic mutations across a range of human malignancies, allowing for a deeper understanding of the interplay of various disease mechanisms. Meanwhile, studies show that the number of transcript isoforms reported to date may be limited by the short-read sequencing due to the inherit limitation of transcriptome reconstruction algorithms, whereas long-read sequencing is able to significantly improve the detection of alternative splicing variants since there is no need to assemble full-length transcripts from short reads. The analysis of these high-throughput long-read sequencing data may permit a systematic view of tumor specific peptide epitopes (also known as neoantigens) that could serve as targets for immunotherapy (Tumor Neoantigens in Personalized Cancer Immunotherapy 2017). Currently, there is no software pipeline available that can efficiently produce mutation-associated cancer antigens from raw high-throughput sequencing data on patient tumor DNA (The Problem with Neoantigen Prediction 2017). In addressing this issue, we introduce a R package that allows the discoveries of peptide epitope candidates, which are the tumor-specific peptide fragments containing potential functional neoantigens. These peptide epitopes consist of structure variants including insertion, deletions, alternative sequences, and peptides from nonsynonymous mutations. Analysis of these precursor candidates with widely used tools such as netMHC allows for the accurate in-silico prediction of neoantigens. The pipeline named neoantigeR is currently hosted in https://github.com/ICBI/neoantigeR.


September 22, 2019  |  

Moving beyond microbiome-wide associations to causal microbe identification.

Microbiome-wide association studies have established that numerous diseases are associated with changes in the microbiota. These studies typically generate a long list of commensals implicated as biomarkers of disease, with no clear relevance to disease pathogenesis. If the field is to move beyond correlations and begin to address causation, an effective system is needed for refining this catalogue of differentially abundant microbes and to allow subsequent mechanistic studies. Here we demonstrate that triangulation of microbe-phenotype relationships is an effective method for reducing the noise inherent in microbiota studies and enabling identification of causal microbes. We found that gnotobiotic mice harbouring different microbial communities exhibited differential survival in a colitis model. Co-housing of these mice generated animals that had hybrid microbiotas and displayed intermediate susceptibility to colitis. Mapping of microbe-phenotype relationships in parental mouse strains and in mice with hybrid microbiotas identified the bacterial family Lachnospiraceae as a correlate for protection from disease. Using directed microbial culture techniques, we discovered Clostridium immunis, a previously unknown bacterial species from this family, that-when administered to colitis-prone mice-protected them against colitis-associated death. To demonstrate the generalizability of our approach, we used it to identify several commensal organisms that induce intestinal expression of an antimicrobial peptide. Thus, we have used microbe-phenotype triangulation to move beyond the standard correlative microbiome study and identify causal microbes for two completely distinct phenotypes. Identification of disease-modulating commensals by microbe-phenotype triangulation may be more broadly applicable to human microbiome studies.


September 22, 2019  |  

RNA sequencing (RNA-Seq) reveals extremely low levels of reticulocyte-derived globin gene transcripts in peripheral blood from horses (Equus caballus) and cattle (Bos taurus).

RNA-seq has emerged as an important technology for measuring gene expression in peripheral blood samples collected from humans and other vertebrate species. In particular, transcriptomics analyses of whole blood can be used to study immunobiology and develop novel biomarkers of infectious disease. However, an obstacle to these methods in many mammalian species is the presence of reticulocyte-derived globin mRNAs in large quantities, which can complicate RNA-seq library sequencing and impede detection of other mRNA transcripts. A range of supplementary procedures for targeted depletion of globin transcripts have, therefore, been developed to alleviate this problem. Here, we use comparative analyses of RNA-seq data sets generated from human, porcine, equine, and bovine peripheral blood to systematically assess the impact of globin mRNA on routine transcriptome profiling of whole blood in cattle and horses. The results of these analyses demonstrate that total RNA isolated from equine and bovine peripheral blood contains very low levels of globin mRNA transcripts, thereby negating the need for globin depletion and greatly simplifying blood-based transcriptomic studies in these two domestic species.


September 22, 2019  |  

Characterization of four C1q/TNF-related proteins (CTRPs) from red-lip mullet (Liza haematocheila) and their transcriptional modulation in response to bacterial and pathogen-associated molecular pattern stimuli.

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses. Copyright © 2018. Published by Elsevier Ltd.


September 22, 2019  |  

Identification and characterization of a carboxypeptidase N1 from red lip mullet (Liza haematocheila); revealing its immune relevance.

Complement system orchestrates the innate and adaptive immunity via the activation, recruitment, and regulation of immune molecules to destroy pathogens. However, regulation of the complement is essential to avoid injuries to the autologous tissues. The present study unveils the characteristic features of an important complement component, anaphylatoxin inactivator from red lip mullet at its molecular and functional level. Mullet carboxypeptidase N1 (MuCPN1) cDNA sequence possessed an open reading frame of 1347 bp, which encoded a protein of 449 amino acids with a predicted molecular weight of 51?kDa. In silico analysis discovered two domains of PM14-Zn carboxypeptidase and a C-terminal domain of M14 N/E carboxypeptidase, two zinc-binding signature motifs, and an N-glycosylation site in the MuCPN1 sequence. Homology analysis revealed that most of the residues in the sequence are conserved among the other selected homologs. Phylogeny analysis showed that MuCPN1 closely cladded with the Maylandia zebra CPN1 and clustered together with the teleostean counterparts. A challenge experiment showed modulated expression of MuCPN1 upon polyinosinic:polycytidylic acid and Lactococcus garviae in head kidney, spleen, gill, and liver tissues. The highest upregulation of MuCPN1 was observed 24?h post infection against poly I:C in each tissue. Moreover, the highest relative expressions upon L. garviae challenge were observed at 24?h post infection in head kidney tissue and 48?h post infection in spleen, gill, and liver tissues. MuCPN1 transfected cells triggered a 2.2-fold increase of nitric oxide (NO) production upon LPS stimulation compared to the un-transfected controls suggesting that MuCPN1 is an active protease which releases arginine from complement C3a, C4a, and C5a. These results have driven certain way towards enhancing the understanding of immune role of MuCPN1 in the complement defense mechanism of red lip mullet. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Androgen receptor variant AR-V9 is co-expressed with AR-V7 in prostate cancer metastases and predicts abiraterone resistance.

Purpose: Androgen receptor (AR) variant AR-V7 is a ligand-independent transcription factor that promotes prostate cancer resistance to AR-targeted therapies.  Accordingly, efforts are underway to develop strategies for monitoring and inhibiting AR-V7 in castration-resistant prostate cancer (CRPC).  The purpose of this study was to understand whether other AR variants may be co-expressed with AR-V7 and promote resistance to AR-targeted therapies. Experimental Design:  We utilized complementary short- and long-read sequencing of intact AR mRNA isoforms to characterize AR expression in CRPC models.  Co-expression of AR-V7 and AR-V9 mRNA in CRPC metastases and circulating tumor cells was assessed by RNA-seq and RT-PCR, respectively.  Expression of AR-V9 protein in CRPC models was evaluated with polyclonal antisera.  Multivariate analysis was performed to test whether AR variant mRNA expression in metastatic tissues was associated with a 12-week progression-free survival endpoint in a prospective clinical trial of 78 CRPC-stage patients initiating therapy with the androgen synthesis inhibitor, abiraterone acetate. Results: AR-V9 was frequently co-expressed with AR-V7.  Both AR variant species were found to share a common 3′ terminal cryptic exon, which rendered AR-V9 susceptible to experimental manipulations that were previously-thought to target AR-V7 uniquely.  AR-V9 promoted ligand-independent growth of prostate cancer cells.  High AR-V9 mRNA expression in CRPC metastases was predictive of primary resistance to abiraterone acetate (HR = 4.0, 95% CI = 1.31-12.2, P = 0.02).   Conclusions:  AR-V9 may be an important component of therapeutic resistance in CRPC. Copyright ©2017, American Association for Cancer Research.


September 22, 2019  |  

Koumiss consumption alleviates symptoms of patients with chronic atrophic gastritis: A possible link To modulation of gut microbiota

Intestinal dysbiosisis closely related to a variety of medical conditions, especially gastrointestinal diseases. The present study aimed to investigate the effects of koumiss on chronic atrophic gastritis (CAG) in an out-patient clinical trial (n = 10; all female subjects aged 41-55; body mass index ranging from 19.5 to 25.8). Each patient consumed three servings of koumiss per day (i.e. 250 ml daily before each of 3 meals) for a 60-day period. The improvement of patients’ symptoms was monitored by comparing the total scores of symptoms before and after the treatment. Meanwhile, the changes in the patients’ fecal microbiota composition and specific blood parameters were determined. After the 60-day koumiss administration, significant symptom improvements were observed, as evidenced by the reduction of the total symptoms score, and changes in blood platelet and cholesterol levels. The changes in patients’ fecal microbiota composition were found. The patients’ fecal microbiota fell into two distinct enterotypes, Bacteroides dorei/ Bacteroides uniformis (BB-enterotype) and Prevotella copri (P-enterotype). Significant less Bacteroides uniformis was found in the BB-enterotype patient group, while significant more butyrate-producing bacteria (e.g. Eubacterium rectale and Faecalibacterium prausnitzii) were found in the P-enterotype patient group, following koumiss administration. After stopping koumiss consumption, the relative abundance of some biomarker taxa returned to the original level, suggesting that the gut microbiota modulatory effect was not permanent and that continuous koumiss administration was required to maintain the therapeutic effect. In conclusion, koumiss consumption could alleviate the symptoms of CAG patients. Our results may help understand the mechanism of koumiss in alleviating CAG disease symptoms, facilitating the development of such products with desired therapeutic functions.


September 22, 2019  |  

Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community.

The oral cavity harbours a complex microbiome that is linked to dental diseases and serves as a route to other parts of the body. Here, the aims were to characterize the oral microbiota by deep sequencing in a low-caries population with regular dental care since childhood and search for association with caries prevalence and incidence. Saliva and tooth biofilm from 17-year-olds and mock bacteria communities were analysed using 16S rDNA Illumina MiSeq (v3-v4) and PacBio SMRT (v1-v8) sequencing including validity and reliability estimates. Caries was scored at 17 and 19 years of age. Both sequencing platforms revealed that Firmicutes dominated in the saliva, whereas Firmicutes and Actinobacteria abundances were similar in tooth biofilm. Saliva microbiota discriminated caries-affected from caries-free adolescents, with enumeration of Scardovia wiggsiae, Streptococcus mutans, Bifidobacterium longum, Leptotrichia sp. HOT498, and Selenomonas spp. in caries-affected participants. Adolescents with B. longum in saliva had significantly higher 2-year caries increment. PacBio SMRT revealed Corynebacterium matruchotii as the most prevalent species in tooth biofilm. In conclusion, both sequencing methods were reliable and valid for oral samples, and saliva microbiota was associated with cross-sectional caries prevalence, especially S. wiggsiae, S. mutans, and B. longum; the latter also with the 2-year caries incidence.


September 22, 2019  |  

Rodent papillomaviruses.

Preclinical infection model systems are extremely valuable tools to aid in our understanding of Human Papillomavirus (HPV) biology, disease progression, prevention, and treatments. In this context, rodent papillomaviruses and their respective infection models are useful tools but remain underutilized resources in the field of papillomavirus biology. Two rodent papillomaviruses, MnPV1, which infects the Mastomys species of multimammate rats, and MmuPV1, which infects laboratory mice, are currently the most studied rodent PVs. Both of these viruses cause malignancy in the skin and can provide attractive infection models to study the lesser understood cutaneous papillomaviruses that have been frequently associated with HPV-related skin cancers. Of these, MmuPV1 is the first reported rodent papillomavirus that can naturally infect the laboratory strain of mice. MmuPV1 is an attractive model virus to study papillomavirus pathogenesis because of the ubiquitous availability of lab mice and the fact that this mouse species is genetically modifiable. In this review, we have summarized the knowledge we have gained about PV biology from the study of rodent papillomaviruses and point out the remaining gaps that can provide new research opportunities.


September 22, 2019  |  

Reduction in fecal microbiota diversity and short-chain fatty acid producers in Methicillin-resistant Staphylococcus aureus infected individuals as revealed by PacBio single molecule, real-time sequencing technology.

Methicillin-resistant Staphylococcus aureus (MRSA) may cause potentially lethal infections. Increasing evidence suggests that the gut microbiota is associated with human health. Yet, whether patients with MRSA infections carry specific signatures in their fecal microbiota composition has not been determined. Thus, this study aimed to compare the fecal microbiota profile of MRSA-positive patients (n=15) with individuals without MRSA infection (n=15) by using the PacBio single molecule, real-time (SMRT) DNA sequencing system and real-time quantitative polymerase chain reaction (qPCR). Mann-Whitney tests and unweighted UniFrac principal coordinate analysis (PCoA) showed that the profile of fecal microbiota was apparently different between the two populations. Both the community richness and diversity were reduced in the MRSA-positive group (p<0.050). The genera Acinetobacter and Enterococcus were highly enriched in the MRSA-positive group, whereas less short-chain fatty acid (SCFA)-producing bacteria, including Butyricimonas, Faecalibacterium, Roseburia, Ruminococcus, Megamonas and Phascolarctobacterium, were detected in the MRSA-positive group. At species level, the species Acinetobacter baumannii and Bacteroides thetaiotaomicron were prevalent in the MRSA-positive group, whereas opposite trends were observed in 17 other species, such as Faecalibacterium prausnitzii, Lactobacillus rogosae, Megamonas rupellensis and Phascolarctobacterium faecium. Positive correlations were observed between Acinetobacter baumannii and erythrocyte sedimentation rate (ESR) (R=0.554, p=0.001), as well as hypersensitive C reactive protein (hsCRP) (R=0.406, p=0.026). Faecalibacterium prausnitzii was negatively associated with ESR (R=-0.545, p=0.002), hsCRP (R=-0.401, p=0.028) and total bile acids (TBA) (R=-0.364, p=0.048). In conclusion, the fecal microbiota structure was different between MRSA-positive and -negative patients. The increase in potential pathogens with the reduction of beneficial populations, such as SCFA-producing bacteria, in MRSA-positive patients may affect prognosis.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.