June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape of the eukaryotic transcriptome on the PacBio RS II.

Alternative splicing of RNA is an important mechanism that increases protein diversity and is pervasive in the most complex biological functions. While advances in RNA sequencing methods have accelerated our understanding of the transcriptome, isoform discovery remains computationally challenging due to short read lengths. Here, we describe the Isoform Sequencing (Iso-Seq) method using long reads generated by the PacBio RS II. We sequenced rat heart and lung RNA using the Clontech® SMARTer® cDNA preparation kit followed by size selection using agarose gel. Additionally, we tested the BluePippin™ device from Sage Science for efficiently extracting longer transcripts = 3 kb. Post-sequencing, we developed a novel isoform-level clustering algorithm to generate high-quality transcript consensus sequences. We show that our method recovered alternative splice forms as well as alternative stop sites, antisense transcription, and retained introns. To conclude, the Iso-Seq method provides a new opportunity for researchers to study the complex eukaryotic transcriptome even in the absence of reference genomes or annotated transcripts.


June 1, 2021  |  

New discoveries from closing Salmonella genomes using Pacific Biosciences continuous long reads.

The newer hierarchical genome assembly process (HGAP) performs de novo assembly using data from a single PacBio long insert library. To assess the benefits of this method, DNA from several Salmonella enterica serovars was isolated from a pure culture. Genome sequencing was performed using Pacific Biosciences RS sequencing technology. The HGAP process enabled us to close sixteen Salmonella subsp. enterica genomes and their associated mobile elements: The ten serotypes include: Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) S. Bareilly, S. Heidelberg, S. Cubana, S. Javiana and S. Typhimurium, S. Newport, S. Montevideo, S. Agona, and S. Tennessee. In addition, we were able to detect novel methyltransferases (MTases) by using the Pacific Biosciences kinetic score distributions showing that each serovar appears to have a novel methylation pattern. For example while all Salmonella serovars examined so far have methylase specific activity for 5’-GATC-3’/3’-CTAG-5’ and 5’-CAGAG-3’/3’-GTCTC-5’ (underlined base indicates a modification), S. Heidelberg is uniquely specific for 5’-ACCANCC-3’/3’-TGGTNGG-5’, while S. Typhimurium has uniquely methylase specific for 5′-GATCAG-3’/3′- CTAGTC-5′ sites, for the samples examined so far. We believe that this may be due to the unique environments and phages that these serotypes have been exposed to. Furthermore, our analysis identified and closed a variety of plasmids such as mobilization plasmids, antimicrobial resistance plasmids and IncX plasmids carrying a Type IV secretion system (T4SS). The VirB/D4 T4SS apparatus is important in that it assists with rapid dissemination of antibiotic resistance and virulence determinants. Presently, only limited information exists regarding the genotypic characterization of drug resistance in S. Heidelberg isolates derived from various host species. Here, we characterize two S. Heidelberg outbreak isolates from two different outbreaks. Both isolates contain the IncX plasmid of approximately 35 kb, and carried the genes virB1, virB2, virB3/4, virB5, virB6, virB7, virB8, virB9, virB10, virB11, virD2, and virD4, that are associated with the T4SS. In addition, the outbreak isolate associated with ground turkey carries a 4,473 bp mobilization plasmid and an incompatibility group (Inc) I1 antimicrobial resistance plasmid encoding resistance to gentamicin (aacC2), beta-lactam (bl2b_tem), streptomycin (aadAI) and tetracycline (tetA, tetR) while the outbreak isolate associated with chicken breast carries the IncI1 plasmid encoding resistance to gentamicin (aacC2), streptomycin (aadAI) and sulfisoxazole (sul1). Using this new technology we explored the genetic elements present in resistant pathogens which will achieve a better understanding of the evolution of Salmonella.


June 1, 2021  |  

Next generation sequencing of full-length HIV-1 env during primary infection.

Background: The use of next generation sequencing (NGS) to examine circulating HIV env variants has been limited due to env’s length (2.6 kb), extensive indel polymorphism, GC deficiency, and long homopolymeric regions. We developed and standardized protocols for isolation, RT-PCR amplification, single molecule real-time (SMRT) sequencing, and haplotype analysis of circulating HIV-1 env variants to evaluate viral diversity in primary infection. Methodology: HIV RNA was extracted from 7 blood plasma samples (1 mL) collected from 5 subjects (one individual sampled and sequenced at 3 time points) in the San Diego Primary Infection Cohort between 3-33 months from their estimated date of infection (EDI). Median viral load per sample was 50,118 HIV RNA copies/mL (range: 22,387-446,683). Full-length (3.2 kb) env amplicons were constructed into SMRTbell templates without shearing, and sequenced on the PacBio RS II using P4/C2 chemistry and 180 minute movie collection without stage start. To examine viral diversity in each sample, we determined haplotypes by clustering circular consensus sequences (CCS), and reconstructing a cluster consensus sequence using a partial order alignment approach. We measured sample diversity both as the mean pairwise distance among reads, and the fraction of reads containing indel polymorphisms. Results: We collected a median of 8,775 CCS reads per SMRT Cell (range: 4243-12234). A median of 7 haplotypes per subject (range: 1-55) were inferred at baseline. For the one subject with longitudinal samples analyzed, we observed an increasing number of distinct haplotypes (8 to 55 haplotypes over the course of 30 months), and an increasing mean pairwise distance among reads (from 0.8% to 1.6%, Tamura-Nei 93). We also observed significant indel polymorphism, with 16% of reads from one sample later in infection (33 months post-EDI) exhibiting deletions of more than 10% of env with respect to the reference strain, HXB2. Conclusions: This study developed a standardized NGS procedure (PacBio SMRT) to deep sequence full-length HIV RNA env variants from the circulating viral population, achieving good coverage, confirming low env diversity during primary infection that increased over time, and revealing significant indel polymorphism that highlights structural variation as important to env evolution. The long, accurate reads greatly simplified downstream bioinformatics analyses, especially haplotype phasing, increasing our confidence in the results. The sequencing methodology and analysis tools developed here could be successfully applied to any area for which full-length HIV env analysis would be useful.


June 1, 2021  |  

Isoform sequencing: Unveiling the complex landscape in eukaryotic transcriptome on the PacBio RS II.

Advances in RNA sequencing have accelerated our understanding of the transcriptome, however isoform discovery remains challenging due to short read lengths. The Iso-Seq Application provides a new alternative to sequence full-length cDNA libraries using long reads from the PacBio RS II. Identification of long and often rare isoforms is demonstrated with rat heart and lung RNA prepared using the Clontech® SMARTer® cDNA preparation kit, followed by agarose-gel size selection in fractions of 1-2 kb, 2-3 kb and 3-6 kb. For each tissue, 1.8 and 1.2 million reads were obtained from 32 and 26 SMRT Cells, respectively. Filtering for reads with both adapters and polyA tail signals yielded >50% putative full-length transcripts. To improve consensus accuracy, we developed an isoform-level clustering algorithm ICE (Iterative Clustering for Error Correction), and polished full-length consensus sequences from ICE using Quiver. This method generated full-length transcripts up to 4.5 kb with = 99% post-correction accuracy. Compared with known rat genes, the Iso-Seq method not only recovered the majority of currently annotated isoforms, but also several unannotated novel isoforms with identified homologs in the RefSeq database. Additionally, alternative stop sites, extended UTRs, and retained introns were detected.


June 1, 2021  |  

Haplotyping using full-length transcript sequencing reveals allele-specific expression

An important need in analyzing complex genomes is the ability to separate and phase haplotypes. While whole genome assembly can deliver this information, it cannot reveal whether there is allele-specific gene or isoform expression. The PacBio Iso-Seq method, which can produce high-quality transcript sequences of 10 kb and longer, has been used to annotate many important plant and animal genomes. We present an algorithm called IsoPhase that post-processes Iso-Seq data for transcript-based haplotyping. We applied IsoPhase to a maize Iso-Seq dataset consisting of two homozygous parents and two F1 cross hybrids. We validated the majority of the SNPs called with IsoPhase against matching short read data and identified cases of allele-specific, gene-level and isoform-level expression.


June 1, 2021  |  

Full-length transcriptome sequencing of melanoma cell line complements long-read assessment of genomic rearrangements

Transcriptome sequencing has proven to be an important tool for understanding the biological changes in cancer genomes including the consequences of structural rearrangements. Short read sequencing has been the method of choice, as the high throughput at low cost allows for transcript quantitation and the detection of even rare transcripts. However, the reads are generally too short to reconstruct complete isoforms. Conversely, long-read approaches can provide unambiguous full-length isoforms, but lower throughput has complicated quantitation and high RNA input requirements has made working with cancer samples challenging. Recently, the COLO 829 cell line was sequenced to 50-fold coverage with PacBio SMRT Sequencing. To validate and extend the findings from this effort, we have generated long-read transcriptome data using an updated PacBio Iso-Seq method, the results of which will be shared at the AACR 2019 General Meeting. With this complimentary transcriptome data, we demonstrate how recent innovations in the PacBio Iso-Seq method sample preparation and sequencing chemistry have made long-read sequencing of cancer transcriptomes more practical. In particular, library preparation has been simplified and throughput has increased. The improved protocol has reduced sample prep time from several days to one day while reducing the sample input requirements ten-fold. In addition, the incorporation of unique molecular identifier (UMI) tags into the workflow has improved the bioinformatics analysis. Yield has also increased, with v3 sequencing chemistry typically delivering > 30 Gb per SMRT Cell 1M. By integrating long and short read data, we demonstrate that the Iso-Seq method is a practical tool for annotating cancer genomes with high-quality transcript information.


June 1, 2021  |  

Single cell isoform sequencing (scIso-Seq) identifies novel full-length mRNAs and cell type-specific expression

Single cell RNA-seq (scRNA-seq) is an emerging field for characterizing cell heterogeneity in complex tissues. However, most scRNA-seq methodologies are limited to gene count information due to short read lengths. Here, we combine the microfluidics scRNA-seq technique, Drop-Seq, with PacBio Single Molecule, Real-Time (SMRT) Sequencing to generate full-length transcript isoforms that can be confidently assigned to individual cells. We generated single cell Iso-Seq (scIso-Seq) libraries for chimp and human cerebral organoid samples on the Dolomite Nadia platform and sequenced each library with two SMRT Cells 8M on the PacBio Sequel II System. We developed a bioinformatics pipeline to identify, classify, and filter full-length isoforms at the single-cell level. We show that scIso-Seq reveals full-length isoform information not accessible using short reads that can reveal differences between cell types and amongst different species.


June 1, 2021  |  

Full-Length RNA-seq of Alzheimer brain on the PacBio Sequel II System

The PacBio Iso-Seq method produces high-quality, full-length transcripts and can characterize a whole transcriptome with a single SMRT Cell 8M. We sequenced an Alzheimer whole brain sample on a single SMRT Cell 8M on the Sequel II System. Using the Iso-Seq bioinformatics pipeline followed by SQANTI2 analysis, we detected 162,290 transcripts for 17,670 genes up to 14 kb in length. More than 60% of the transcripts are novel isoforms, the vast majority of which have supporting cage peak data and polyadenylation signals, demonstrating the utility of long-read sequencing for human disease research.


April 21, 2020  |  

Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing.

For the first time, full-length 16S rRNA sequencing method was applied to disclose the bacterial species and communities of a full-scale wastewater treatment plant using an anaerobic/anoxic/oxic (A/A/O) process in Wuhan, China. The compositions of the bacteria at phylum and class levels in the activated sludge were similar to which revealed by Illumina Miseq sequencing. At genus and species levels, third-generation sequencing showed great merits and accuracy. Typical functional taxa classified to ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), denitrifying bacteria (DB), anaerobic ammonium oxidation bacteria (ANAMMOXB) and polyphosphate-accumulating organisms (PAOs) were presented, which were Nitrosomonas (1.11%), Nitrospira (3.56%), Pseudomonas (3.88%), Planctomycetes (13.80%), Comamonadaceae (1.83%), respectively. Pseudomonas (3.88%) and Nitrospira (3.56%) were the most predominating two genera, mainly containing Pseudomonas extremaustralis (1.69%), Nitrospira defluvii (3.13%), respectively. Bacteria regarding to nitrogen and phosphorus removal at species level were put forward. The predicted functions proved that the A/A/O process was efficient regarding nitrogen and organics removal. Copyright © 2019 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.


April 21, 2020  |  

Towards PacBio-based pan-eukaryote metabarcoding using full-length ITS sequences.

Development of high-throughput sequencing techniques have greatly benefited our understanding about microbial ecology; yet the methods producing short reads suffer from species-level resolution and uncertainty of identification. Here we optimize PacBio-based metabarcoding protocols covering the Internal Transcribed Spacer (ITS region) and partial Small Subunit (SSU) of the rRNA gene for species-level identification of all eukaryotes, with a specific focus on Fungi (including Glomeromycota) and Stramenopila (particularly Oomycota). Based on tests on composite soil samples and mock communities, we propose best suitable degenerate primers, ITS9munngs + ITS4ngsUni for eukaryotes and selected groups therein and discuss pros and cons of long read-based identification of eukaryotes. This article is protected by copyright. All rights reserved.


April 21, 2020  |  

Full-length mRNA sequencing and gene expression profiling reveal broad involvement of natural antisense transcript gene pairs in pepper development and response to stresses.

Pepper is an important vegetable with great economic value and unique biological features. In the past few years, significant development has been made towards understanding the huge complex pepper genome; however, pepper functional genomics has not been well studied. To better understand the pepper gene structure and pepper gene regulation, we conducted full-length mRNA sequencing by PacBio sequencing and obtained 57862 high-quality full-length mRNA sequences derived from 18362 previously annotated and 5769 newly detected genes. New gene models were built that combined the full-length mRNA sequences and corrected approximately 500 fragmented gene models from previous annotations. Based on the full-length mRNA, we identified 4114 and 5880 pepper genes forming natural antisense transcript (NAT) genes in-cis and in-trans, respectively. Most of these genes accumulate small RNAs in their overlapping regions. By analyzing these NAT gene expression patterns in our transcriptome data, we identified many NAT pairs responsive to a variety of biological processes in pepper. Pepper formate dehydrogenase 1 (FDH1), which is required for R-gene-mediated disease resistance, may be regulated by nat-siRNAs and participate in a positive feedback loop in salicylic acid biosynthesis during resistance responses. Several cis-NAT pairs and subgroups of trans-NAT genes were responsive to pepper pericarp and placenta development, which may play roles in capsanthin and capsaicin biosynthesis. Using a comparative genomics approach, the evolutionary mechanisms of cis-NATs were investigated, and we found that an increase in intergenic sequences accounted for the loss of most cis-NATs, while transposon insertion contributed to the formation of most new cis-NATs. This article is protected by copyright. All rights reserved.This article is protected by copyright. All rights reserved.


April 21, 2020  |  

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59?kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.