Menu
September 22, 2019  |  

Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis).

Bamboo is one of the most important nontimber forestry products worldwide. However, a chromosome-level reference genome is lacking, and an evolutionary view of alternative splicing (AS) in bamboo remains unclear despite emerging omics data and improved technologies.Here, we provide a chromosome-level de novo genome assembly of moso bamboo (Phyllostachys edulis) using additional abundance sequencing data and a Hi-C scaffolding strategy. The significantly improved genome is a scaffold N50 of 79.90 Mb, approximately 243 times longer than the previous version. A total of 51,074 high-quality protein-coding loci with intact structures were identified using single-molecule real-time sequencing and manual verification. Moreover, we provide a comprehensive AS profile based on the identification of 266,711 unique AS events in 25,225 AS genes by large-scale transcriptomic sequencing of 26 representative bamboo tissues using both the Illumina and Pacific Biosciences sequencing platforms. Through comparisons with orthologous genes in related plant species, we observed that the AS genes are concentrated among more conserved genes that tend to accumulate higher transcript levels and share less tissue specificity. Furthermore, gene family expansion, abundant AS, and positive selection were identified in crucial genes involved in the lignin biosynthetic pathway of moso bamboo.These fundamental studies provide useful information for future in-depth analyses of comparative genome and AS features. Additionally, our results highlight a global perspective of AS during evolution and diversification in bamboo.


September 22, 2019  |  

Proteogenomic analysis reveals alternative splicing and translation as part of the abscisic acid response in Arabidopsis seedlings.

In eukaryotes, mechanisms such as alternative splicing (AS) and alternative translation initiation (ATI) contribute to organismal protein diversity. Specifically, splicing factors play crucial roles in responses to environment and development cues; however, the underlying mechanisms are not well investigated in plants. Here, we report the parallel employment of short-read RNA sequencing, single molecule long-read sequencing and proteomic identification to unravel AS isoforms and previously unannotated proteins in response to abscisic acid (ABA) treatment. Combining the data from the two sequencing methods, approximately 83.4% of intron-containing genes were alternatively spliced. Two AS types, which are referred to as alternative first exon (AFE) and alternative last exon (ALE), were more abundant than intron retention (IR); however, by contrast to AS events detected under normal conditions, differentially expressed AS isoforms were more likely to be translated. ABA extensively affects the AS pattern, indicated by the increasing number of non-conventional splicing sites. This work also identified thousands of unannotated peptides and proteins by ATI based on mass spectrometry and a virtual peptide library deduced from both strands of coding regions within the Arabidopsis genome. The results enhance our understanding of AS and alternative translation mechanisms under normal conditions, and in response to ABA treatment.© 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.


September 22, 2019  |  

Comparative transcriptomic and physiological analyses of Medicago sativa L. indicates that multiple regulatory networks are activated during continuous ABA treatment.

Alfalfa is the most extensively cultivated forage legume worldwide. However, the molecular mechanisms underlying alfalfa responses to exogenous abscisic acid (ABA) are still unknown. In this study, the first global transcriptome profiles of alfalfa roots under ABA treatments for 1, 3 and 12 h (three biological replicates for each time point, including the control group) were constructed using a BGISEQ-500 sequencing platform. A total of 50,742 isoforms with a mean length of 2541 bp were generated, and 4944 differentially expressed isoforms (DEIs) were identified after ABA deposition. Metabolic analyses revealed that these DEIs were involved in plant hormone signal transduction, transcriptional regulation, antioxidative defense and pathogen immunity. Notably, several well characterized hormone signaling pathways, for example, the core ABA signaling pathway, was activated, while salicylic acid, jasmonate and ethylene signaling pathways were mainly suppressed by exogenous ABA. Moreover, the physiological work showed that catalase and peroxidase activity and glutathione and proline content were increased after ABA deposition, which is in accordance with the dynamic transcript profiles of the relevant genes in antioxidative defense system. These results indicate that ABA has the potential to improve abiotic stress tolerance, but that it may negatively regulate pathogen resistance in alfalfa.


September 22, 2019  |  

Multiple regulatory networks are activated during cold stress in Medicago sativa L.

Cultivated alfalfa (Medicago sativa L.) is one of the most important perennial legume forages in the world, and it has considerable potential as a valuable forage crop for livestock. However, the molecular mechanisms underlying alfalfa responses to cold stress are largely unknown. In this study, the transcriptome changes in alfalfa under cold stress at 4 °C for 2, 6, 24, and 48 h (three replicates for each time point) were analyzed using the high-throughput sequencing platform, BGISEQ-500, resulting in the identification of 50,809 annotated unigenes and 5283 differentially expressed genes (DEGs). Metabolic pathway enrichment analysis demonstrated that the DEGs were involved in carbohydrate metabolism, photosynthesis, plant hormone signal transduction, and the biosynthesis of amino acids. Moreover, the physiological changes of glutathione and proline content, catalase, and peroxidase activity were in accordance with dynamic transcript profiles of the relevant genes. Additionally, some transcription factors might play important roles in the alfalfa response to cold stress, as determined by the expression pattern of the related genes during 48 h of cold stress treatment. These findings provide valuable information for identifying and characterizing important components in the cold signaling network in alfalfa and enhancing the understanding of the molecular mechanisms underlying alfalfa responses to cold stress.


September 22, 2019  |  

Improved high-quality genome assembly and annotation of Tibetan hulless barley

Background The Tibetan hulless barley (Hordeum vulgare L. var. nudum), also called textquotedblleftQingketextquotedblright in Chinese and textquotedblleftNetextquotedblright in Tibetan, is the staple food for Tibetans and an important livestock feed in the Tibetan Plateau. The Tibetan hulless barley in China has about 3500 years of cultivation history, mainly produced in Tibet, Qinghai, Sichuan, Yunnan and other areas. In addition, Tibetan hulless barley has rich nutritional value and outstanding health effects, including the beta glucan, dietary fiber, amylopectin, the contents of trace elements, which are higher than any other cereal crops.Findings Here, we reported an improved high-quality assembly of Tibetan hulless barley genome with 4.0 Gb in size. We employed the falcon assembly package, scaffolding and error correction tools to finish improvement using PacBio long reads sequencing technology, with contig and scaffold N50 lengths of 1.563Mb and 4.006Mb, respectively, representing more continuous than the original Tibetan hulless barley genome nearly two orders of magnitude. We also re-annotated the new assembly, and reported 61,303 stringent confident putative protein-coding genes, of which 40,457 is HC genes. We have developed a new Tibetan hulless barley genome database (THBGD) to download and use friendly, as well as to better manage the information of the Tibetan hulless barley genetic resources.Conclusions The availability of new Tibetan hulless barley genome and annotations will take the genetics of Tibetan hulless barley to a new level and will greatly simplify the breeders effort. It will also enrich the granary of the Tibetan people.AbbreviationsBLASTBasic Local Alignment Search ToolBUSCOBenchmarking Universal Single-Copy OrthologsQVquality valuePacBioPacifc BiosciencesRNA-seqRNA sequencingNGSNext generation sequencingTGSThird generation sequencingTHBGDTibetan hulless barley Genome Database


September 22, 2019  |  

Transcription-associated mutation promotes RNA complexity in highly expressed genes – A major new source of selectable variation.

Alternatively spliced transcript isoforms are thought to play a critical role for functional diversity. However, the mechanism generating the enormous diversity of spliced transcript isoforms remains unknown, and its biological significance remains unclear. We analyzed transcriptomes in saker falcons, chickens, and mice to show that alternative splicing occurs more frequently, yielding more isoforms, in highly expressed genes. We focused on hemoglobin in the falcon, the most abundantly expressed genes in blood, finding that alternative splicing produces 10-fold more isoforms than expected from the number of splice junctions in the genome. These isoforms were produced mainly by alternative use of de novo splice sites generated by transcription-associated mutation (TAM), not by the RNA editing mechanism normally invoked. We found that high expression of globin genes increases mutation frequencies during transcription, especially on nontranscribed DNA strands. After DNA replication, transcribed strands inherit these somatic mutations, creating de novo splice sites, and generating multiple distinct isoforms in the cell clone. Bisulfate sequencing revealed that DNA methylation may counteract this process by suppressing TAM, suggesting DNA methylation can spatially regulate RNA complexity. RNA profiling showed that falcons living on the high Qinghai-Tibetan Plateau possess greater global gene expression levels and higher diversity of mean to high abundance isoforms (reads per kilobases per million mapped reads?=18) than their low-altitude counterparts, and we speculate that this may enhance their oxygen transport capacity under low-oxygen environments. Thus, TAM-induced RNA diversity may be physiologically significant, providing an alternative strategy in lifestyle evolution.


September 22, 2019  |  

Genome and secretome analysis of Pochonia chlamydosporia provide new insight into egg-parasitic mechanisms.

Pochonia chlamydosporia infects eggs and females of economically important plant-parasitic nematodes. The fungal isolates parasitizing different nematodes are genetically distinct. To understand their intraspecific genetic differentiation, parasitic mechanisms, and adaptive evolution, we assembled seven putative chromosomes of P. chlamydosporia strain 170 isolated from root-knot nematode eggs (~44?Mb, including 7.19% of transposable elements) and compared them with the genome of the strain 123 (~41?Mb) isolated from cereal cyst nematode. We focus on secretomes of the fungus, which play important roles in pathogenicity and fungus-host/environment interactions, and identified 1,750 secreted proteins, with a high proportion of carboxypeptidases, subtilisins, and chitinases. We analyzed the phylogenies of these genes and predicted new pathogenic molecules. By comparative transcriptome analysis, we found that secreted proteins involved in responses to nutrient stress are mainly comprised of proteases and glycoside hydrolases. Moreover, 32 secreted proteins undergoing positive selection and 71 duplicated gene pairs encoding secreted proteins are identified. Two duplicated pairs encoding secreted glycosyl hydrolases (GH30), which may be related to fungal endophytic process and lost in many insect-pathogenic fungi but exist in nematophagous fungi, are putatively acquired from bacteria by horizontal gene transfer. The results help understanding genetic origins and evolution of parasitism-related genes.


September 22, 2019  |  

An ancient integration in a plant NLR is maintained as a trans-species polymorphism

Plant immune receptors are under constant selective pressure to maintain resistance to plant pathogens. Nucleotide-binding leucine-rich repeat (NLR) proteins are one class of cytoplasmic immune receptors whose genes commonly show signatures of adaptive evolution. While it is known that balancing selection contributes to maintaining high intraspecific allelic diversity, the evolutionary mechanism that influences the transmission of alleles during speciation remains unclear. The barley Mla locus has over 30 described alleles conferring isolate-specific resistance to barley powdery mildew and contains three NLR families (RGH1, RGH2, and RGH3). We discovered (using sequence capture and RNAseq) the presence of a novel integrated Exo70 domain in RGH2 in the Mla3 haplotype. Allelic variation across barley accessions includes presence/absence of the integrated domain in RGH2. Expanding our search to several Poaceae species, we found shared interspecific conservation in the RGH2-Exo70 integration. We hypothesise that balancing selection has maintained allelic variation at Mla as a trans-species polymorphism over 24 My, thus contributing to and preserving interspecific allelic diversity during speciation.


September 22, 2019  |  

Draft genome of the Peruvian scallop Argopecten purpuratus.

The Peruvian scallop, Argopecten purpuratus, is mainly cultured in southern Chile and Peru was introduced into China in the last century. Unlike other Argopecten scallops, the Peruvian scallop normally has a long life span of up to 7 to 10 years. Therefore, researchers have been using it to develop hybrid vigor. Here, we performed whole genome sequencing, assembly, and gene annotation of the Peruvian scallop, with an important aim to develop genomic resources for genetic breeding in scallops.A total of 463.19-Gb raw DNA reads were sequenced. A draft genome assembly of 724.78 Mb was generated (accounting for 81.87% of the estimated genome size of 885.29 Mb), with a contig N50 size of 80.11 kb and a scaffold N50 size of 1.02 Mb. Repeat sequences were calculated to reach 33.74% of the whole genome, and 26,256 protein-coding genes and 3,057 noncoding RNAs were predicted from the assembly.We generated a high-quality draft genome assembly of the Peruvian scallop, which will provide a solid resource for further genetic breeding and for the analysis of the evolutionary history of this economically important scallop.


September 22, 2019  |  

Knockout of rapC improves the bacillomycin D yield based on de novo genome sequencing of Bacillus amyloliquefaciens fmbJ.

Bacillus amyloliquefaciens, a Gram-positive and soil-dwelling bacterium, could produce secondary metabolites that suppress plant pathogens. In this study, we provided the whole genome sequence results of B. amyloliquefaciens fmbJ, which had one circular chromosome of 4?193?344 bp with 4249 genes, 87 tRNA genes, and 27 rRNA genes. In addition, fmbJ was found to contain several gene clusters of antimicrobial lipopeptides (bacillomycin D, surfactin, and fengycin), and bacillomycin D homologues were further comprehensively identified. To clarify the influence of rapC regulating the synthesis of lipopeptide on the yield of bacillomycin D, rapC gene in fmbJ was successfully deleted by the marker-free method. Finally, it was found that the deletion of rapC gene in fmbJ significantly improved bacillomycin D production from 240.7 ± 18.9 to 360.8 ± 30.7 mg/L, attributed to the increased the expression of bacillomycin D synthesis-related genes through enhancing the transcriptional level of comA, comP, and phrC. These results showed that the production of bacillomycin D in B. amyloliquefaciens fmbJ might be regulated by the RapC-PhrC system. The findings are expected to advance further agricultural application of Bacillus spp. as a promising source of natural bioactive compounds.


September 22, 2019  |  

Coordinated regulation of core and accessory genes in the multipartite genome of Sinorhizobium fredii.

Prokaryotes benefit from having accessory genes, but it is unclear how accessory genes can be linked with the core regulatory network when developing adaptations to new niches. Here we determined hierarchical core/accessory subsets in the multipartite pangenome (composed of genes from the chromosome, chromid and plasmids) of the soybean microsymbiont Sinorhizobium fredii by comparing twelve Sinorhizobium genomes. Transcriptomes of two S. fredii strains at mid-log and stationary growth phases and in symbiotic conditions were obtained. The average level of gene expression, variation of expression between different conditions, and gene connectivity within the co-expression network were positively correlated with the gene conservation level from strain-specific accessory genes to genus core. Condition-dependent transcriptomes exhibited adaptive transcriptional changes in pangenome subsets shared by the two strains, while strain-dependent transcriptomes were enriched with accessory genes on the chromid. Proportionally more chromid genes than plasmid genes were co-expressed with chromosomal genes, while plasmid genes had a higher within-replicon connectivity in expression than chromid ones. However, key nitrogen fixation genes on the symbiosis plasmid were characterized by high connectivity in both within- and between-replicon analyses. Among those genes with host-specific upregulation patterns, chromosomal znu and mdt operons, encoding a conserved high-affinity zinc transporter and an accessory multi-drug efflux system, respectively, were experimentally demonstrated to be involved in host-specific symbiotic adaptation. These findings highlight the importance of integrative regulation of hierarchical core/accessory components in the multipartite genome of bacteria during niche adaptation and in shaping the prokaryotic pangenome in the long run.


September 22, 2019  |  

Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis).

Bacterial endophytes with the capacity to degrade petroleum hydrocarbons and promote plant growth may facilitate phytoremediation for the removal of petroleum hydrocarbons from contaminated soils. A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium, Pseudomonas aeruginosa L10, was isolated from the roots of a reed, Phragmites australis, in the Yellow River Delta, Shandong, China. P. aeruginosa L10 efficiently degraded C10-C26n-alkanes from diesel oil, as well as common polycyclic aromatic hydrocarbons (PAHs) such as naphthalene, phenanthrene, and pyrene. In addition, P. aeruginosa L10 could produce biosurfactant, which was confirmed by the oil spreading method, and surface tension determination of inocula. Moreover, P. aeruginosa L10 had plant growth-stimulating attributes, including siderophore and indole-3-acetic acid (IAA) release, along with 1-aminocyclopropane-1-carboxylic (ACC) deaminase activity. To explore the mechanisms underlying the phenotypic traits of endophytic P. aeruginosa L10, we sequenced its complete genome. From the genome, we identified genes related to petroleum hydrocarbon degradation, such as putative genes encoding monooxygenase, dioxygenase, alcohol dehydrogenase, and aldehyde dehydrogenase. Genome annotation revealed that P. aeruginosa L10 contained a gene cluster involved in the biosynthesis of rhamnolipids, rhlABRI, which should be responsible for the observed biosurfactant activity. We also identified two clusters of genes involved in the biosynthesis of siderophore (pvcABCD and pchABCDREFG). The genome also harbored tryptophan biosynthetic genes (trpAB, trpDC, trpE, trpF, and trpG) that are responsible for IAA synthesis. Moreover, the genome contained the ACC deaminase gene essential for ACC deaminase activity. This study will facilitate applications of endophytic P. aeruginosa L10 to phytoremediation by advancing the understanding of hydrocarbon degradation, biosurfactant synthesis, and mutualistic interactions between endophytes and host plants.


September 22, 2019  |  

Draft genome sequence of Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina, and Morchella septimelata.

Draft genomes of the species Annulohypoxylon stygium, Aspergillus mulundensis, Berkeleyomyces basicola (syn. Thielaviopsis basicola), Ceratocystis smalleyi, two Cercospora beticola strains, Coleophoma cylindrospora, Fusarium fracticaudum, Phialophora cf. hyalina and Morchella septimelata are presented. Both mating types (MAT1-1 and MAT1-2) of Cercospora beticola are included. Two strains of Coleophoma cylindrospora that produce sulfated homotyrosine echinocandin variants, FR209602, FR220897 and FR220899 are presented. The sequencing of Aspergillus mulundensis, Coleophoma cylindrospora and Phialophora cf. hyalina has enabled mapping of the gene clusters encoding the chemical diversity from the echinocandin pathways, providing data that reveals the complexity of secondary metabolism in these different species. Overall these genomes provide a valuable resource for understanding the molecular processes underlying pathogenicity (in some cases), biology and toxin production of these economically important fungi.


September 22, 2019  |  

Co-culture of soil biofilm isolates enables the discovery of novel antibiotics

Bacterial natural products (NPs) are considered to be a promising source of drug discovery. However, the biosynthesis gene clusters (BGCs) of NP are not often expressed, making it difficult to identify them. Recently, the study of biofilm community showed bacteria may gain competitive advantages by the secretion of antibiotics, implying a possible way to screen antibiotic by evaluating the social behavior of bacteria. In this study, we have described an efficient workflow for novel antibiotic discovery by employing the bacterial social interaction strategy with biofilm cultivation, co-culture, transcriptomic and genomic methods. We showed that a biofilm dominant species, i.e. Pseudomonas sp. G7, which was isolated from cultivated soil biofilm community, was highly competitive in four-species biofilm communities, as the synergistic combinations preferred to exclude this strain while the antagonistic combinations did not. Through the analysis of transcriptomic changes in four-species co-culture and the complete genome of Pseudomonas sp. G7, we finally discovered two novel non-ribosomal polypeptide synthetic (NRPS) BGCs, whose products were predicted to have seven and six amino acid components, respectively. Furthermore, we provide evidence showing that only when Pseudomonas sp. G7 was co-cultivated with at least two or three other bacterial species can these BGC genes be induced, suggesting that the co-culture of the soil biofilm isolates is critical to the discovery of novel antibiotics. As a conclusion, we set a model of applying microbial interaction to the discovery of new antibiotics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.