X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Monday, March 30, 2020

AGBT PacBio Workshop: SMRT Sequencing roadmap: better throughput, lower costs

In this AGBT 2017 talk, PacBio CSO Jonas Korlach provided a technology roadmap for the Sequel System, including plans the continue performance and throughput increases through early 2019. Per SMRT Cell throughput of the Sequel System is expected to double this year and again next year. Together with a new higher-capacity SMRT Cell expected to be released by the end of 2018, these improvements result in a ~30-fold increase or ~150 Gb / SMRT Cell allowing a real $1000 real de novo human genome assembly. Also discussed: Additional application protocol improvements, new chemistry and software updates, and a look at…

Read More »

Monday, March 30, 2020

Webinar: Addressing “NGS Dead Zones” with third generation PacBio sequencing

SMRT Sequencing is a DNA sequencing technology characterized by long read lengths and high consensus accuracy, regardless of the sequence complexity or GC content of the DNA sample. These characteristics can be harnessed to address medically relevant genes, mRNA transcripts, and other genomic features that are otherwise difficult or impossible to resolve. I will describe examples for such new clinical research in diverse areas, including full-length gene sequencing with allelic haplotype phasing, gene/pseudogene discrimination, sequencing extreme DNA contexts, high-resolution pharmacogenomics, biomarker discovery, structural variant resolution, full-length mRNA isoform cataloging, and direct methylation detection.

Read More »

Wednesday, February 26, 2020

Single Molecule Real Time (SMRT) sequencing sensitively detects polyclonal and compound BCR-ABL in patients who relapse on kinase inhibitor therapy.

Secondary kinase domain (KD) mutations are the most well-recognized mechanism of resistance to tyrosine kinase inhibitors (TKIs) in chronic myeloid leukemia (CML) and other cancers. In some cases, multiple drug resistant KD mutations can coexist in an individual patient (“polyclonality”). Alternatively, more than one mutation can occur in tandem on a single allele (“compound mutations”) following response and relapse to sequentially administered TKI therapy. Distinguishing between these two scenarios can inform the clinical choice of subsequent TKI treatment. There is currently no clinically adaptable methodology that offers the ability to distinguish polyclonal from compound mutations. Due to the size of…

Read More »

Sunday, September 22, 2019

JAFFA: High sensitivity transcriptome-focused fusion gene detection.

Genomic instability is a hallmark of cancer and, as such, structural alterations and fusion genes are common events in the cancer landscape. RNA sequencing (RNA-Seq) is a powerful method for profiling cancers, but current methods for identifying fusion genes are optimised for short reads. JAFFA (https://github.com/Oshlack/JAFFA/wiki) is a sensitive fusion detection method that outperforms other methods with reads of 100 bp or greater. JAFFA compares a cancer transcriptome to the reference transcriptome, rather than the genome, where the cancer transcriptome is inferred using long reads directly or by de novo assembling short reads.

Read More »

Sunday, September 22, 2019

Single molecule real-time (SMRT) sequencing comes of age: applications and utilities for medical diagnostics.

Short read massive parallel sequencing has emerged as a standard diagnostic tool in the medical setting. However, short read technologies have inherent limitations such as GC bias, difficulties mapping to repetitive elements, trouble discriminating paralogous sequences, and difficulties in phasing alleles. Long read single molecule sequencers resolve these obstacles. Moreover, they offer higher consensus accuracies and can detect epigenetic modifications from native DNA. The first commercially available long read single molecule platform was the RS system based on PacBio’s single molecule real-time (SMRT) sequencing technology, which has since evolved into their RSII and Sequel systems. Here we capsulize how SMRT…

Read More »

Sunday, September 22, 2019

Clonal distribution of BCR-ABL1 mutations and splice isoforms by single-molecule long-read RNA sequencing.

The evolution of mutations in the BCR-ABL1 fusion gene transcript renders CML patients resistant to tyrosine kinase inhibitor (TKI) based therapy. Thus screening for BCR-ABL1 mutations is recommended particularly in patients experiencing poor response to treatment. Herein we describe a novel approach for the detection and surveillance of BCR-ABL1 mutations in CML patients.To detect mutations in the BCR-ABL1 transcript we developed an assay based on the Pacific Biosciences (PacBio) sequencing technology, which allows for single-molecule long-read sequencing of BCR-ABL1 fusion transcript molecules. Samples from six patients with poor response to therapy were analyzed both at diagnosis and follow-up. cDNA was…

Read More »

Sunday, September 22, 2019

Current developments in molecular monitoring in chronic myeloid leukemia.

Molecular monitoring plays an essential role in the clinical management of chronic myeloid leukemia (CML) patients, and now guides clinical decision making. Quantitative reverse-transcriptase-polymerase-chain-reaction (qRT-PCR) assessment of BCR-ABL1 transcript levels has become the standard of care protocol in CML. However, further developments are required to assess leukemic burden more efficiently, monitor minimal residual disease (MRD), detect mutations that drive resistance to tyrosine kinase inhibitor (TKI) therapy and identify predictors of response to TKI therapy. Cartridge-based BCR-ABL1 quantitation, digital PCR and next generation sequencing are examples of technologies which are currently being explored, evaluated and translated into the clinic. Here we…

Read More »

Sunday, September 22, 2019

Characterization of fusion genes and the significantly expressed fusion isoforms in breast cancer by hybrid sequencing.

We developed an innovative hybrid sequencing approach, IDP-fusion, to detect fusion genes, determine fusion sites and identify and quantify fusion isoforms. IDP-fusion is the first method to study gene fusion events by integrating Third Generation Sequencing long reads and Second Generation Sequencing short reads. We applied IDP-fusion to PacBio data and Illumina data from the MCF-7 breast cancer cells. Compared with the existing tools, IDP-fusion detects fusion genes at higher precision and a very low false positive rate. The results show that IDP-fusion will be useful for unraveling the complexity of multiple fusion splices and fusion isoforms within tumorigenesis-relevant fusion…

Read More »

Sunday, September 22, 2019

Complete genome sequencing of exopolysaccharide-producing Lactobacillus plantarum K25 provides genetic evidence for the probiotic functionality and cold endurance capacity of the strain.

Lactobacillus plantarum (L. plantarum) K25 is a probiotic strain isolated from Tibetan kefir. Previous studies showed that this exopolysaccharide (EPS)-producing strain was antimicrobial active and cold tolerant. These functional traits were evidenced by complete genome sequencing of strain K25 with a circular 3,175,846-bp chromosome and six circular plasmids, encoding 3365 CDSs, 16 rRNA genes and 70 tRNA genes. Genomic analysis of L. plantarum K25 illustrates that this strain contains the previous reported mechanisms of probiotic functionality and cold tolerance, involving plantaricins, lysozyme, bile salt hydrolase, chaperone proteins, osmoprotectant, oxidoreductase, EPSs and terpenes. Interestingly, strain K25 harbors more genes that function…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »