X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Sunday, July 7, 2019

Best practices in insect genome sequencing: What works and what doesn’t.

The last decade of decreasing DNA sequencing costs and proliferating sequencing services in core labs and companies has brought the de-novo genome sequencing and assembly of insect species within reach for many entomologists. However, sequence production alone is not enough to generate a high quality reference genome, and in many cases, poor planning can lead to extremely fragmented genome assemblies preventing high quality gene annotation and other desired analyses. Insect genomes can be problematic to assemble, due to combinations of high polymorphism, inability to breed for genome homozygocity, and small physical sizes limiting the quantity of DNA able to be…

Read More »

Sunday, July 7, 2019

It’s more than stamp collecting: how genome sequencing can unify biological research.

The availability of reference genome sequences, especially the human reference, has revolutionized the study of biology. However, while the genomes of some species have been fully sequenced, a wide range of biological problems still cannot be effectively studied for lack of genome sequence information. Here, I identify neglected areas of biology and describe how both targeted species sequencing and more broad taxonomic surveys of the tree of life can address important biological questions. I enumerate the significant benefits that would accrue from sequencing a broader range of taxa, as well as discuss the technical advances in sequencing and assembly methods…

Read More »

Sunday, July 7, 2019

Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes.

The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a…

Read More »

Sunday, July 7, 2019

Twenty years of bacterial genome sequencing.

Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a ‘sequencing singularity’, where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and…

Read More »

Sunday, July 7, 2019

The Glanville fritillary genome retains an ancient karyotype and reveals selective chromosomal fusions in Lepidoptera.

Previous studies have reported that chromosome synteny in Lepidoptera has been well conserved, yet the number of haploid chromosomes varies widely from 5 to 223. Here we report the genome (393?Mb) of the Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae), a widely recognized model species in metapopulation biology and eco-evolutionary research, which has the putative ancestral karyotype of n=31. Using a phylogenetic analyses of Nymphalidae and of other Lepidoptera, combined with orthologue-level comparisons of chromosomes, we conclude that the ancestral lepidopteran karyotype has been n=31 for at least 140?My. We show that fusion chromosomes have retained the ancestral chromosome segments and…

Read More »

Sunday, July 7, 2019

Complete genome sequences of eight Helicobacter pylori strains with different virulence factor genotypes and methylation profiles, isolated from patients with diverse gastrointestinal diseases on Okinawa Island, Japan, determined using PacBio Single-Molecule Real-Time Technology.

We report the complete genome sequences of eight Helicobacter pylori strains isolated from patients with gastrointestinal diseases in Okinawa, Japan. Whole-genome sequencing and DNA methylation detection were performed using the PacBio platform. De novo assembly determined a single, complete contig for each strain. Furthermore, methylation analysis identified virulence factor genotype-dependent motifs.

Read More »

Sunday, July 7, 2019

Replication of the Escherichia coli chromosome in RNase HI-deficient cells: multiple initiation regions and fork dynamics.

DNA replication in Escherichia coli is normally initiated at a single origin, oriC, dependent on initiation protein DnaA. However, replication can be initiated elsewhere on the chromosome at multiple ectopic oriK sites. Genetic evidence indicates that initiation from oriK depends on RNA-DNA hybrids (R-loops), which are normally removed by enzymes such as RNase HI to prevent oriK from misfiring during normal growth. Initiation from oriK sites occurs in RNase HI-deficient mutants, and possibly in wild-type cells under certain unusual conditions. Despite previous work, the locations of oriK and their impact on genome stability remain unclear. We combined 2D gel electrophoresis…

Read More »

Sunday, July 7, 2019

In transition: primate genomics at a time of rapid change.

The field of nonhuman primate genomics is undergoing rapid change and making impressive progress. Exploiting new technologies for DNA sequencing, researchers have generated new whole-genome sequence assemblies for multiple primate species over the past 6 years. In addition, investigations of within-species genetic variation, gene expression and RNA sequences, conservation of non-protein-coding regions of the genome, and other aspects of comparative genomics are moving at an accelerating speed. This progress is opening a wide array of new research opportunities in the analysis of comparative primate genome content and evolution. It also creates new possibilities for the use of nonhuman primates as…

Read More »

Sunday, July 7, 2019

Assemblathon 2: evaluating de novo methods of genome assembly in three vertebrate species.

The process of generating raw genome sequence data continues to become cheaper, faster, and more accurate. However, assembly of such data into high-quality, finished genome sequences remains challenging. Many genome assembly tools are available, but they differ greatly in terms of their performance (speed, scalability, hardware requirements, acceptance of newer read technologies) and in their final output (composition of assembled sequence). More importantly, it remains largely unclear how to best assess the quality of assembled genome sequences. The Assemblathon competitions are intended to assess current state-of-the-art methods in genome assembly.In Assemblathon 2, we provided a variety of sequence data to…

Read More »

Sunday, July 7, 2019

The value of new genome references.

Genomic information has become a ubiquitous and almost essential aspect of biological research. Over the last 10-15 years, the cost of generating sequence data from DNA or RNA samples has dramatically declined and our ability to interpret those data increased just as remarkably. Although it is still possible for biologists to conduct interesting and valuable research on species for which genomic data are not available, the impact of having access to a high quality whole genome reference assembly for a given species is nothing short of transformational. Research on a species for which we have no DNA or RNA sequence…

Read More »

Sunday, July 7, 2019

Efficient CNV breakpoint analysis reveals unexpected structural complexity and correlation of dosage-sensitive genes with clinical severity in genomic disorders.

Genomic disorders are the clinical conditions manifested by submicroscopic genomic rearrangements including copy number variants (CNVs). The CNVs can be identified by array-based comparative genomic hybridization (aCGH), the most commonly used technology for molecular diagnostics of genomic disorders. However, clinical aCGH only informs CNVs in the probe-interrogated regions. Neither orientational information nor the resulting genomic rearrangement structure is provided, which is a key to uncovering mutational and pathogenic mechanisms underlying genomic disorders. Long-range polymerase chain reaction (PCR) is a traditional approach to obtain CNV breakpoint junction, but this method is inefficient when challenged by structural complexity such as often found…

Read More »

Sunday, July 7, 2019

IgA-coated E. coli enriched in Crohn’s disease spondyloarthritis promote TH17-dependent inflammation.

Peripheral spondyloarthritis (SpA) is a common extraintestinal manifestation in patients with active inflammatory bowel disease (IBD) characterized by inflammatory enthesitis, dactylitis, or synovitis of nonaxial joints. However, a mechanistic understanding of the link between intestinal inflammation and SpA has yet to emerge. We evaluated and functionally characterized the fecal microbiome of IBD patients with or without peripheral SpA. Coupling the sorting of immunoglobulin A (IgA)-coated microbiota with 16S ribosomal RNA-based analysis (IgA-seq) revealed a selective enrichment in IgA-coated Escherichia coli in patients with Crohn’s disease-associated SpA (CD-SpA) compared to CD alone. E. coli isolates from CD-SpA-derived IgA-coated bacteria were similar…

Read More »

Sunday, July 7, 2019

Improved annotation of the insect vector of citrus greening disease: biocuration by a diverse genomics community.

The Asian citrus psyllid (Diaphorina citri Kuwayama) is the insect vector of the bacterium Candidatus Liberibacter asiaticus (CLas), the pathogen associated with citrus Huanglongbing (HLB, citrus greening). HLB threatens citrus production worldwide. Suppression or reduction of the insect vector using chemical insecticides has been the primary method to inhibit the spread of citrus greening disease. Accurate structural and functional annotation of the Asian citrus psyllid genome, as well as a clear understanding of the interactions between the insect and CLas, are required for development of new molecular-based HLB control methods. A draft assembly of the D. citri genome has been…

Read More »

Sunday, July 7, 2019

Complete genome sequence of Vibrio gazogenes ATCC 43942.

Vibrio gazogenes ATCC 43942 has the potential to synthesize a plethora of metabolites which are of clinical and agricultural significance in response to environmental triggers. The complete genomic sequence of Vibrio gazogenes ATCC 43942 is reported herein, contributing to the knowledge base of strains in the Vibrio genus. Copyright © 2017 Gummadidala et al.

Read More »

Sunday, July 7, 2019

SVachra: a tool to identify genomic structural variation in mate pair sequencing data containing inward and outward facing reads.

Characterization of genomic structural variation (SV) is essential to expanding the research and clinical applications of genome sequencing. Reliance upon short DNA fragment paired end sequencing has yielded a wealth of single nucleotide variants and internal sequencing read insertions-deletions, at the cost of limited SV detection. Multi-kilobase DNA fragment mate pair sequencing has supplemented the void in SV detection, but introduced new analytic challenges requiring SV detection tools specifically designed for mate pair sequencing data. Here, we introduce SVachra – Structural Variation Assessment of CHRomosomal Aberrations, a breakpoint calling program that identifies large insertions-deletions, inversions, inter- and intra-chromosomal translocations utilizing…

Read More »

1 2 3 4

Subscribe for blog updates:

Archives