Menu
April 21, 2020  |  

Transmission of ESBL-producing Escherichia coli between broilers and humans on broiler farms.

ESBL and AmpC ß-lactamases are an increasing concern for public health. Studies suggest that ESBL/pAmpC-producing Escherichia coli and their plasmids carrying antibiotic resistance genes can spread from broilers to humans working or living on broiler farms. These studies used traditional typing methods, which may not have provided sufficient resolution to reliably assess the relatedness of these isolates.Eleven suspected transmission events among broilers and humans living/working on eight broiler farms were investigated using whole-genome short-read (Illumina) and long-read sequencing (PacBio). Core genome MLST (cgMLST) was performed to investigate the occurrence of strain transmission. Horizontal plasmid and gene transfer were analysed using BLAST.Of eight suspected strain transmission events, six were confirmed. The isolate pairs had identical ESBL/AmpC genes and fewer than eight allelic differences according to the cgMLST, and five had an almost identical plasmid composition. On one of the farms, cgMLST revealed that the isolate pairs belonging to ST10 from a broiler and a household member of the farmer had 475 different alleles, but that the plasmids were identical, indicating horizontal transfer of mobile elements rather than strain transfer. Of three suspected horizontal plasmid transmission events, one was confirmed. In addition, gene transfer between plasmids was found.The present study confirms transmission of strains as well as horizontal plasmid and gene transfer between broilers and farmers and household members on the same farm. WGS is an important tool to confirm suspected zoonotic strain and resistance gene transmission. © The Author(s) 2019. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please email: journals.permissions@oup.com.


September 22, 2019  |  

Comparison of highly and weakly virulent Dickeya solani strains, with a view on the pangenome and panregulon of this species.

Bacteria belonging to the genera Dickeya and Pectobacterium are responsible for significant economic losses in a wide variety of crops and ornamentals. During last years, increasing losses in potato production have been attributed to the appearance of Dickeya solani. The D. solani strains investigated so far share genetic homogeneity, although different virulence levels were observed among strains of various origins. The purpose of this study was to investigate the genetic traits possibly related to the diverse virulence levels by means of comparative genomics. First, we developed a new genome assembly pipeline which allowed us to complete the D. solani genomes. Four de novo sequenced and ten publicly available genomes were used to identify the structure of the D. solani pangenome, in which 74.8 and 25.2% of genes were grouped into the core and dispensable genome, respectively. For D. solani panregulon analysis, we performed a binding site prediction for four transcription factors, namely CRP, KdgR, PecS and Fur, to detect the regulons of these virulence regulators. Most of the D. solani potential virulence factors were predicted to belong to the accessory regulons of CRP, KdgR, and PecS. Thus, some differences in gene expression could exist between D. solani strains. The comparison between a highly and a low virulent strain, IFB0099 and IFB0223, respectively, disclosed only small differences between their genomes but significant differences in the production of virulence factors like pectinases, cellulases and proteases, and in their mobility. The D. solani strains also diverge in the number and size of prophages present in their genomes. Another relevant difference is the disruption of the adhesin gene fhaB2 in the highly virulent strain. Strain IFB0223, which has a complete adhesin gene, is less mobile and less aggressive than IFB0099. This suggests that in this case, mobility rather than adherence is needed in order to trigger disease symptoms. This study highlights the utility of comparative genomics in predicting D. solani traits involved in the aggressiveness of this emerging plant pathogen.


September 22, 2019  |  

Production of glycine-derived ammonia as a low-cost and long-distance antibiotic strategy by Streptomyces

Soil-inhabiting streptomycetes are Natures medicine makers, producing over half of all known antibiotics and many other bioactive natural products. However, these bacteria also produce many volatile compounds, and research into these molecules and their role in soil ecology is rapidly gaining momentum. Here we show that streptomycetes have the ability to kill bacteria over long distances via air-borne antibiosis. Our research shows that streptomycetes do so by producing surprisingly high amounts of the low-cost volatile antimicrobial ammonia, which travels over long distances and antagonises both Gram-positive and Gram-negative bacteria. Glycine is required as precursor to produce ammonia, and inactivation of the glycine cleavage system annihilated air-borne antibiosis. As a resistance strategy, E. coli cells acquired mutations resulting in reduced expression of the porin master regulator OmpR and its cognate kinase EnvZ, which was just enough to allow them to survive. We further show that ammonia enhances the activity of the more costly canonical antibiotics, suggesting that streptomycetes adopt a low-cost strategy to sensitize competitors for antibiosis over longer distances.


September 22, 2019  |  

Stress-induced formation of cell wall-deficient cells in filamentous actinomycetes.

The cell wall is a shape-defining structure that envelopes almost all bacteria and protects them from environmental stresses. Bacteria can be forced to grow without a cell wall under certain conditions that interfere with cell wall synthesis, but the relevance of these wall-less cells (known as L-forms) is unclear. Here, we show that several species of filamentous actinomycetes have a natural ability to generate wall-deficient cells in response to hyperosmotic stress, which we call S-cells. This wall-deficient state is transient, as S-cells are able to switch to the normal mycelial mode of growth. However, prolonged exposure of S-cells to hyperosmotic stress yields variants that are able to proliferate indefinitely without their cell wall, similarly to L-forms. We propose that formation of wall-deficient cells in actinomycetes may serve as an adaptation to osmotic stress.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.