fbpx
X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, July 27, 2021

Purchasing Guide: Application consumable bundles

With this PacBio Application Consumable Bundles Purchasing Guide, you can easily order the required consumables for the Sequel II System. Simply choose your SMRT Sequencing Application and with the single part number place your order to get started.

Read More »

Tuesday, July 27, 2021

Application Note: Microbial multiplexing workflow on the Sequel System

Obtaining microbial genomes with the highest accuracy and contiguity is extremely important when exploring the functional impact of genetic and epigenetic variants on a genome-wide scale. A comprehensive view of the bacterial genome, including genes, regulatory regions, IS elements, phage integration sites, and base modifications is vital to understanding key traits such as antibiotic resistance, virulence, and metabolism. SMRT Sequencing provides complete genomes, often assembled into a single contig. Our streamlined microbial multiplexing procedure for the Sequel System, from library preparation to genome assembly, can be completed with less than 8 hours bench time. Starting with high-quality genomic DNA (gDNA),…

Read More »

Tuesday, July 27, 2021

Application Note: Considerations for using the low and ultra-low DNA input workflows for whole genome sequencing

As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of…

Read More »

Tuesday, July 27, 2021

Product Note: SMRTbell express template prep 2.0 for microbial multiplexing

The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for obtaining complete microbial genome assemblies with multiplexed sequencing. By using a single-tube, addition-only strategy, the streamlined workflow reduces…

Read More »

Tuesday, July 27, 2021

Application Brief: Targeted sequencing for amplicons – Best Practices

With Single Molecule, Real-Time (SMRT) Sequencing and the Sequel System, you can easily and cost effectively generate highly accurate long reads (HiFi reads, >99% single-molecule accuracy) from genes or regions of interest ranging in size from several hundred base pairs to 20 kb. Target all types of variation across relevant genomic regions, including low complexity regions like repeat expansions, promoters, and flanking regions of transposable elements.

Read More »

Tuesday, July 27, 2021

Application Brief: No-Amp targeted sequencing – Best Practices

With the PacBio no-amplification (No-Amp) targeted sequencing method, you can now sequence through previously inaccessible regions of the genome to provide base-level resolution of disease-causing repeat expansions. By combining the CRISPR-Cas9 enrichment method with Single Molecule, Real-Time (SMRT) Sequencing on the Sequel Systems you are no longer limited by hard-to-amplify targets.

Read More »

Tuesday, June 1, 2021

Long-read, single-molecule applications for protein engineering.

The long read lengths of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases of sequence. This feature is particularly useful in the context of protein engineering, where large numbers of similar constructs are generated routinely to explore the effects of mutations on function and stability. We have developed a PCR-based barcoded sequencing method to generate high quality, full-length sequence data for batches of constructs generated in a common backbone. Individual barcodes are coupled to primers targeting a common region of the vector of interest. The amplified products are pooled into a single DNA library, and sequencing data…

Read More »

Tuesday, June 1, 2021

Accurately surveying uncultured microbial species with SMRT Sequencing

Background: Microbial ecology is reshaping our understanding of the natural world by revealing the large phylogenetic and functional diversity of microbial life. However the vast majority of these microorganisms remain poorly understood, as most cultivated representatives belong to just four phylogenetic groups and more than half of all identified phyla remain uncultivated. Characterization of this microbial ‘dark matter’ will thus greatly benefit from new metagenomic methods for in situ analysis. For example, sensitive high throughput methods for the characterization of community composition and structure from the sequencing of conserved marker genes. Methods: Here we utilize Single Molecule Real-Time (SMRT) sequencing…

Read More »

Tuesday, June 1, 2021

Developments in PacBio metagenome sequencing: Shotgun whole genomes and full-length 16S.

The assembly of metagenomes is dramatically improved by the long read lengths of SMRT Sequencing. This is demonstrated in an experimental design to sequence a mock community from the Human Microbiome Project, and assemble the data using the hierarchical genome assembly process (HGAP) at Pacific Biosciences. Results of this analysis are promising, and display much improved contiguity in the assembly of the mock community as compared to publicly available short-read data sets and assemblies. Additionally, the use of base modification information to make further associations between contigs provides additional data to improve assemblies, and to distinguish between members within a…

Read More »

Tuesday, June 1, 2021

HLA sequencing using SMRT Technology – High resolution and high throughput HLA genotyping in a clinical setting

Sequence based typing (SBT) is considered the gold standard method for HLA typing. Current SBT methods are rather laborious and are prone to phase ambiguity problems and genotyping uncertainties. As a result, the NGS community is rapidly seeking to remedy these challenges, to produce high resolution and high throughput HLA sequencing conducive to a clinical setting. Today, second generation NGS technologies are limited in their ability to yield full length HLA sequences required for adequate phasing and identification of novel alleles. Here we present the use of single molecule real time (SMRT) sequencing as a means of determining full length/long…

Read More »

Tuesday, June 1, 2021

Long Amplicon Analysis: Highly accurate, full-length, phased, allele-resolved gene sequences from multiplexed SMRT Sequencing data.

The correct phasing of genetic variations is a key challenge for many applications of DNA sequencing. Allele-level resolution is strongly preferred for histocompatibility sequencing where recombined genes can exhibit different compatibilities than their parents. In other contexts, gene complementation can provide protection if deleterious mutations are found on only one allele of a gene. These problems are especially pronounced in immunological domains given the high levels of genetic diversity and recombination seen in regions like the Major Histocompatibility Complex. A new tool for analyzing Single Molecule, Real-Time (SMRT) Sequencing data – Long Amplicon Analysis (LAA) – can generate highly accurate,…

Read More »

Tuesday, June 1, 2021

Evaluation of multiplexing strategies for HLA genotyping using PacBio Sequencing technology.

Fully phased allele-level sequencing of highly polymorphic HLA genes is greatly facilitated by SMRT Sequencing technology. In the present work, we have evaluated multiple DNA barcoding strategies for multiplexing several loci from multiple individuals, using three different tagging methods. Specifically MHC class I genes HLA-A, -B, and –C were indexed via DNA Barcodes by either tailed primers or barcoded SMRTbell adapters. Eight different 16-bp barcode sequences were used in symmetric & asymmetric pairing. Eight DNA barcoded adapters in symmetric pairing were independently ligated to a pool of HLA-A, -B and –C for eight different individuals, one at a time and…

Read More »

Tuesday, June 1, 2021

Multiplexing human HLA class I & II genotyping with DNA barcode adapters for high throughput research.

Human MHC class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DP and -DQ, play a critical role in the immune system as major factors responsible for organ transplant rejection. The have a direct or linkage-based association with several diseases, including cancer and autoimmune diseases, and are important targets for clinical and drug sensitivity research. HLA genes are also highly polymorphic and their diversity originates from exonic combinations as well as recombination events. A large number of new alleles are expected to be encountered if these genes are sequenced through the UTRs. Thus allele-level resolution is strongly preferred…

Read More »

Tuesday, June 1, 2021

Barcoding strategies for multiplexing of samples using a long-read sequencing technology.

We have developed barcoding reagents and workflows for multiplexing amplicons or fragmented native genomic (DNA) prior to Single Molecule, Real-Time (SMRT) Sequencing. The long reads of PacBio’s SMRT Sequencing enable detection of linked mutations across multiple kilobases (kb) of sequence. This feature is particularly useful in the context of mutational analysis or SNP confirmation, where a large number of samples are generated routinely. To validate this workflow, a set of 384 1.7-kb amplicons, each derived from variants of the Phi29 DNA polymerase gene, were barcoded during amplification, pooled, and sequenced on a single SMRT Cell. To demonstrate the applicability of…

Read More »

1 2 3 10

Subscribe for blog updates:

Archives

Stay
Current

Visit our blog »