X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, January 7, 2021

Case Study: Mining complex metagenomes for protein discovery with long-read sequencing

The bacteria living on and within us can impact health, disease, and even our behavior, but there is still much to learn about the breadth of their effects. The torrent of new discoveries unleashed by high-throughput sequencing has captured the imagination of scientists and the public alike. Scientists at Second Genome are hoping to apply these insights to improve human health, leveraging their bioinformatics expertise to mine bacterial communities for potential therapeutics. Recently they teamed up with scientists at PacBio to explore how long-read sequencing might supplement their short-read-based pipeline for gene discovery, using an environmental sample as a test…

Read More »

Thursday, January 7, 2021

Case Study: Sequencing an historic bacterial collection for the future

The UK’s National Collection of Type Cultures (NCTC) is a unique collection of more than 5,000 expertly preserved and authenticated bacterial cultures, many of historical significance. Founded in 1920, NCTC is the longest established collection of its type anywhere in the world, with a history of its own that has reflected — and contributed to — the evolution of microbiology for more than 100 years.

Read More »

Thursday, January 7, 2021

Infographic: A brief history of microbiology

Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the…

Read More »

Thursday, January 7, 2021

Case Study: Diving Deep – Revealing the mysteries of marine life with SMRT Sequencing

Many scientists are using PacBio Single Molecule, Real-Time (SMRT) Sequencing to explore the genomes and transcriptomes of a wide variety of marine species and ecosystems. These studies are already adding to our understanding of how marine species adapt and evolve, contributing to conservation efforts, and informing how we can optimize food production through efficient aquaculture.

Read More »

Thursday, January 7, 2021

Technical Note: Preparing DNA for PacBio HiFi sequencing – Extraction and quality control

Single Molecule, Real-Time (SMRT) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA in order to produce highly accurate long reads, or HiFi reads. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in longer libraries and better performance during sequencing. This technical note is intended to give recommendations, tips and tricks for the extraction of DNA, as well as assessing and preserving the quality and size of your DNA sample to be used for HiFi sequencing.

Read More »

Wednesday, January 6, 2021

i5K Webinar: High-quality de novo insect genome assemblies using PacBio sequencing

PacBio Sequencing is characterized by very long sequence reads (averaging > 10,000 bases), lack of GC-bias, and high consensus accuracy. These features have allowed the method to provide a new gold standard in de novo genome assemblies, producing highly contiguous (contig N50 > 1 Mb) and accurate (> QV 50) genome assemblies. We will briefly describe the technology and then highlight the full workflow, from sample preparation through sequencing to data analysis, on examples of insect genome assemblies, and illustrate the difference these high-quality genomes represent with regard to biological insights, compared to fragmented draft assemblies generated by short-read sequencing.

Read More »

Wednesday, January 6, 2021

AGBT Virtual Poster: Interspecies interation amoung meat spoilage-related lactic acid bacteria

In this AGBT 2017 poster, the University of Helsinki’s Petri Auevinen reports on efforts to understand bacteria that grow on, and subsequently spoil, food. This analysis monitored DNA modifications and transcriptomic changes in three species of lactic acid bacteria. Scientists discovered that the organisms’ metabolic profiles change substantially when grown together compared to those cultured individually, and are now studying how Cas protein activity changes under these conditions too.

Read More »

Wednesday, January 6, 2021

Webinar: Long-read sequencing and infectious disease: New insights into longstanding challenges

One of the longstanding challenges in infectious disease has been the lack of high-quality reference genomes. However, developments in genome sequencing are helping researchers overcome this barrier. Recently, highly contiguous genome assemblies of Plasmodium falciparum, Aedes aegypti, and multiple trypanosomes have become available. The number of reference genomes for bacteria that cause infectious disease is similarly expanding rapidly. In this webinar Meredith Ashby discusses how these new resources are already yielding new biological insights into critical questions in infectious disease research, including how parasites evade the immune system add how pathogens are adapting to evolutionary pressures.

Read More »

Wednesday, January 6, 2021

User Group Meeting: Long-read RNA Sequencing in neglected human parasites

In this PacBio User Group Meeting presentation, Nic Wheeler of University of Wisconsin-Madison, speaks about RNA sequencing for filarial nematodes associated with understudied tropical diseases. His team used Iso-Seq analysis to improve gene models and achieve better transcriptome coverage for these worms, which typically have poorly annotated and fragmented genome assemblies. While getting enough RNA to study is a technical challenge, the group still managed to generate full-length isoforms, many of which were novel or contained novel junctions.

Read More »

Wednesday, January 6, 2021

User Group Meeting: New genotype to phenotype associations in viral metagenomes enabled by SMRT Sequencing

In this PacBio User Group Meeting lightning talk, Shawn Polson of the University of Delaware speaks about viral metagenomes, which are more challenging to distinguish than their bacterial counterparts because viruses have no 16S equivalent. By using SMRT Sequencing, his team generated higher-resolution data about viral genomes and aims to use this information as a guide to how these genomes function.

Read More »

1 2 3 249

Subscribe for blog updates:

Archives