Menu
September 22, 2019  |  

Metataxonomics reveal vultures as a reservoir for Clostridium perfringens.

The Old World vulture may carry and spread pathogens for emerging infections since they feed on the carcasses of dead animals and participate in the sky burials of humans, some of whom have died from communicable diseases. Therefore, we studied the precise fecal microbiome of the Old World vulture with metataxonomics, integrating the high-throughput sequencing of almost full-length small subunit ribosomal RNA (16S rRNA) gene amplicons in tandem with the operational phylogenetic unit (OPU) analysis strategy. Nine vultures of three species were sampled using rectal swabs on the Qinghai-Tibet Plateau, China. Using the Pacific Biosciences sequencing platform, we obtained 54 135 high-quality reads of 16S rRNA amplicons with an average of 1442±6.9?bp in length and 6015±1058 reads per vulture. Those sequences were classified into 314 OPUs, including 102 known species, 50 yet to be described species and 161 unknown new lineages of uncultured representatives. Forty-five species have been reported to be responsible for human outbreaks or infections, and 23 yet to be described species belong to genera that include pathogenic species. Only six species were common to all vultures. Clostridium perfringens was the most abundant and present in all vultures, accounting for 30.8% of the total reads. Therefore, using the new technology, we found that vultures are an important reservoir for C. perfringens as evidenced by the isolation of 107 strains encoding for virulence genes, representing 45 sequence types. Our study suggests that the soil-related C. perfringens and other pathogens could have a reservoir in vultures and other animals.


September 22, 2019  |  

Comparative Annotation Toolkit (CAT)-simultaneous clade and personal genome annotation.

The recent introductions of low-cost, long-read, and read-cloud sequencing technologies coupled with intense efforts to develop efficient algorithms have made affordable, high-quality de novo sequence assembly a realistic proposition. The result is an explosion of new, ultracontiguous genome assemblies. To compare these genomes, we need robust methods for genome annotation. We describe the fully open source Comparative Annotation Toolkit (CAT), which provides a flexible way to simultaneously annotate entire clades and identify orthology relationships. We show that CAT can be used to improve annotations on the rat genome, annotate the great apes, annotate a diverse set of mammals, and annotate personal, diploid human genomes. We demonstrate the resulting discovery of novel genes, isoforms, and structural variants-even in genomes as well studied as rat and the great apes-and how these annotations improve cross-species RNA expression experiments.© 2018 Fiddes et al.; Published by Cold Spring Harbor Laboratory Press.


September 22, 2019  |  

Normalized long read RNA sequencing in chicken reveals transcriptome complexity similar to human.

Despite the significance of chicken as a model organism, our understanding of the chicken transcriptome is limited compared to human. This issue is common to all non-human vertebrate annotations due to the difficulty in transcript identification from short read RNAseq data. While previous studies have used single molecule long read sequencing for transcript discovery, they did not perform RNA normalization and 5′-cap selection which may have resulted in lower transcriptome coverage and truncated transcript sequences.We sequenced normalised chicken brain and embryo RNA libraries with Pacific Bioscience Iso-Seq. 5′ cap selection was performed on the embryo library to provide methodological comparison. From these Iso-Seq sequencing projects, we have identified 60 k transcripts and 29 k genes within the chicken transcriptome. Of these, more than 20 k are novel lncRNA transcripts with ~3 k classified as sense exonic overlapping lncRNA, which is a class that is underrepresented in many vertebrate annotations. The relative proportion of alternative transcription events revealed striking similarities between the chicken and human transcriptomes while also providing explanations for previously observed genomic differences.Our results indicate that the chicken transcriptome is similar in complexity compared to human, and provide insights into other vertebrate biology. Our methodology demonstrates the potential of Iso-Seq sequencing to rapidly expand our knowledge of transcriptomics.


September 22, 2019  |  

Species groups distributed across elevational gradients reveal convergent and continuous genetic adaptation to high elevations.

Although many cases of genetic adaptations to high elevations have been reported, the processes driving these modifications and the pace of their evolution remain unclear. Many high-elevation adaptations (HEAs) are thought to have arisen in situ as populations rose with growing mountains. In contrast, most high-elevation lineages of the Qinghai-Tibetan Plateau appear to have colonized from low-elevation areas. These lineages provide an opportunity for studying recent HEAs and comparing them with ancestral low-elevation alternatives. Herein, we compare four frogs (three species of Nanorana and a close lowland relative) and four lizards (Phrynocephalus) that inhabit a range of elevations on or along the slopes of the Qinghai-Tibetan Plateau. The sequential cladogenesis of these species across an elevational gradient allows us to examine the gradual accumulation of HEA at increasing elevations. Many adaptations to high elevations appear to arise gradually and evolve continuously with increasing elevational distributions. Numerous related functions, especially DNA repair and energy metabolism pathways, exhibit rapid change and continuous positive selection with increasing elevations. Although the two studied genera are distantly related, they exhibit numerous convergent evolutionary changes, especially at the functional level. This functional convergence appears to be more extensive than convergence at the individual gene level, although we found 32 homologous genes undergoing positive selection for change in both high-elevation groups. We argue that species groups distributed along a broad elevational gradient provide a more powerful system for testing adaptations to high-elevation environments compared with studies that compare only pairs of high-elevation versus low-elevation species.


September 22, 2019  |  

Avian transcriptomics: opportunities and challenges

Recent developments in next-generation sequencing technologies have greatly facilitated the study of whole transcriptomes in model and non-model species. Studying the transcriptome and how it changes across a variety of biological conditions has had major implications for our understanding of how the genome is regulated in different contexts, and how to interpret adaptations and the phenotype of an organism. The aim of this review is to highlight the potential of these new technologies for the study of avian transcriptomics, and to summarise how transcriptomics has been applied in ornithology. A total of 81 peer-reviewed scientific articles that used transcriptomics to answer questions within a broad range of study areas in birds are used as examples throughout the review. We further provide a quick guide to highlight the most important points which need to be take into account when planning a transcriptomic study in birds, and discuss how researchers with little background in molecular biology can avoid potential pitfalls. Suggestions for further reading are supplied throughout. We also discuss possible future developments in the technology platforms used for ribonucleic acid sequencing. By summarising how these novel technologies can be used to answer questions that have long been asked by ornithologists, we hope to bridge the gap between traditional ornithology and genomics, and to stimulate more interdisciplinary research.


September 22, 2019  |  

The state of play in higher eukaryote gene annotation.

A genome sequence is worthless if it cannot be deciphered; therefore, efforts to describe – or ‘annotate’ – genes began as soon as DNA sequences became available. Whereas early work focused on individual protein-coding genes, the modern genomic ocean is a complex maelstrom of alternative splicing, non-coding transcription and pseudogenes. Scientists – from clinicians to evolutionary biologists – need to navigate these waters, and this has led to the design of high-throughput, computationally driven annotation projects. The catalogues that are being produced are key resources for genome exploration, especially as they become integrated with expression, epigenomic and variation data sets. Their creation, however, remains challenging.


September 22, 2019  |  

SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes.

Numerous methods have been developed to analyse RNA sequencing (RNA-seq) data, but most rely on the availability of a reference genome, making them unsuitable for non-model organisms. Here we present superTranscripts, a substitute for a reference genome, where each gene with multiple transcripts is represented by a single sequence. The Lace software is provided to construct superTranscripts from any set of transcripts, including de novo assemblies. We demonstrate how superTranscripts enable visualisation, variant detection and differential isoform detection in non-model organisms. We further use Lace to combine reference and assembled transcriptomes for chicken and recover hundreds of gaps in the reference genome.


September 22, 2019  |  

Assessment of the physicochemical properties and bacterial composition of Lactobacillus plantarum and Enterococcus faecium-fermented Astragalus membranaceus using single molecule, real-time sequencing technology.

We investigated if fermentation with probiotic cultures could improve the production of health-promoting biological compounds in Astragalus membranaceus. We tested the probiotics Enterococcus faecium, Lactobacillus plantarum and Enterococcus faecium?+?Lactobacillus plantarum and applied PacBio single molecule, real-time sequencing technology (SMRT) to evaluate the quality of Astragalus fermentation. We found that the production rates of acetic acid, methylacetic acid, aethyl acetic acid and lactic acid using E. faecium?+?L. plantarum were 1866.24?mg/kg on day 15, 203.80?mg/kg on day 30, 996.04?mg/kg on day 15, and 3081.99?mg/kg on day 20, respectively. Other production rates were: polysaccharides, 9.43%, 8.51%, and 7.59% on day 10; saponins, 19.6912?mg/g, 21.6630?mg/g and 20.2084?mg/g on day 15; and flavonoids, 1.9032?mg/g, 2.0835?mg/g, and 1.7086?mg/g on day 20 using E. faecium, L. plantarum and E. faecium?+?L. plantarum, respectively. SMRT was used to analyze microbial composition, and we found that E. faecium and L. plantarum were the most prevalent species after fermentation for 3 days. E. faecium?+?L. plantarum gave more positive effects than single strains in the Astragalus solid state fermentation process. Our data demonstrated that the SMRT sequencing platform is applicable to quality assessment of Astragalus fermentation.


September 22, 2019  |  

The first whole transcriptomic exploration of pre-oviposited early chicken embryos using single and bulked embryonic RNA-sequencing.

The chicken is a valuable model organism, especially in evolutionary and embryology research because its embryonic development occurs in the egg. However, despite its scientific importance, no transcriptome data have been generated for deciphering the early developmental stages of the chicken because of practical and technical constraints in accessing pre-oviposited embryos.Here, we determine the entire transcriptome of pre-oviposited avian embryos, including oocyte, zygote, and intrauterine embryos from Eyal-giladi and Kochav stage I (EGK.I) to EGK.X collected using a noninvasive approach for the first time. We also compare RNA-sequencing data obtained using a bulked embryo sequencing and single embryo/cell sequencing technique. The raw sequencing data were preprocessed with two genome builds, Galgal4 and Galgal5, and the expression of 17,108 and 26,102 genes was quantified in the respective builds. There were some differences between the two techniques, as well as between the two genome builds, and these were affected by the emergence of long intergenic noncoding RNA annotations.The first transcriptome datasets of pre-oviposited early chicken embryos based on bulked and single embryo sequencing techniques will serve as a valuable resource for investigating early avian embryogenesis, for comparative studies among vertebrates, and for novel gene annotation in the chicken genome.


September 22, 2019  |  

Long-read sequencing of chicken transcripts and identification of new transcript isoforms.

The chicken has long served as an important model organism in many fields, and continues to aid our understanding of animal development. Functional genomics studies aimed at probing the mechanisms that regulate development require high-quality genomes and transcript annotations. The quality of these resources has improved dramatically over the last several years, but many isoforms and genes have yet to be identified. We hope to contribute to the process of improving these resources with the data presented here: a set of long cDNA sequencing reads, and a curated set of new genes and transcript isoforms not currently represented in the most up-to-date genome annotation currently available to the community of researchers who rely on the chicken genome.


September 22, 2019  |  

De novo clustering of long-read transcriptome data using a greedy, quality-value based algorithm

Long-read sequencing of transcripts with PacBio Iso-Seq and Oxford Nanopore Technologies has proven to be central to the study of complex isoform landscapes in many organisms. However, current de novo transcript reconstruction algorithms from long-read data are limited, leaving the potential of these technologies unfulfilled. A common bottleneck is the dearth of scalable and accurate algorithms for clustering long reads according to their gene family of origin. To address this challenge, we develop isONclust, a clustering algorithm that is greedy (in order to scale) and makes use of quality values (in order to handle variable error rates). We test isONclust on three simulated and five biological datasets, across a breadth of organisms, technologies, and read depths. Our results demonstrate that isONclust is a substantial improvement over previous approaches, both in terms of overall accuracy and/or scalability to large datasets. Our tool is available at https://github.com/ksahlin/isONclust.


September 22, 2019  |  

A manganese superoxide dismutase (MnSOD) from red lip mullet, Liza haematocheila: Evaluation of molecular structure, immune response, and antioxidant function.

Manganese superoxide dismutase (MnSOD) is a nuclear-encoded antioxidant metalloenzyme. The main function of this enzyme is to dismutase the toxic superoxide anion (O2-) into less toxic hydrogen peroxide (H2O2) and oxygen (O2). Structural analysis of mullet MnSOD (MuMnSOD) was performed using different bioinformatics tools. Pairwise alignment revealed that the protein sequence matched to that derived from Larimichthys crocea with a 95.2% sequence identity. Phylogenetic tree analysis showed that the MuMnSOD was included in the category of teleosts. Multiple sequence alignment showed that a SOD Fe-N domain, SOD Fe-C domain, and Mn/Fe SOD signature were highly conserved among the other examined MnSOD orthologs. Quantitative real-time PCR showed that the highest MuMnSOD mRNA expression level was in blood cells. The highest expression level of MuMnSOD was observed in response to treatment with both Lactococcus garvieae and lipopolysaccharide (LPS) at 6?h post treatment in the head kidney and blood. Potential ROS-scavenging ability of the purified recombinant protein (rMuMnSOD) was examined by the xanthine oxidase assay (XOD assay). The optimum temperature and pH for XOD activity were found to be 25?°C and pH 7, respectively. Relative XOD activity was significantly increased with the dose of rMuMnSOD, revealing its dose dependency. Activity of rMuMnSOD was inhibited by potassium cyanide (KCN) and N-N’-diethyl-dithiocarbamate (DDC). Moreover, expression of MuMnSOD resulted in considerable growth retardation of both gram-positive and gram-negative bacteria. Results of the current study suggest that MuMnSOD acts as an antioxidant enzyme and participates in the immune response in mullet. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Base modifications affecting RNA polymerase and reverse transcriptase fidelity.

Ribonucleic acid (RNA) is capable of hosting a variety of chemically diverse modifications, in both naturally-occurring post-transcriptional modifications and artificial chemical modifications used to expand the functionality of RNA. However, few studies have addressed how base modifications affect RNA polymerase and reverse transcriptase activity and fidelity. Here, we describe the fidelity of RNA synthesis and reverse transcription of modified ribonucleotides using an assay based on Pacific Biosciences Single Molecule Real-Time sequencing. Several modified bases, including methylated (m6A, m5C and m5U), hydroxymethylated (hm5U) and isomeric bases (pseudouridine), were examined. By comparing each modified base to the equivalent unmodified RNA base, we can determine how the modification affected cumulative RNA polymerase and reverse transcriptase fidelity. 5-hydroxymethyluridine and N6-methyladenosine both increased the combined error rate of T7 RNA polymerase and reverse transcriptases, while pseudouridine specifically increased the error rate of RNA synthesis by T7 RNA polymerase. In addition, we examined the frequency, mutational spectrum and sequence context of reverse transcription errors on DNA templates from an analysis of second strand DNA synthesis.


September 22, 2019  |  

Accurate characterization of the IFITM locus using MiSeq and PacBio sequencing shows genetic variation in Galliformes.

Interferon inducible transmembrane (IFITM) proteins are effectors of the immune system widely characterized for their role in restricting infection by diverse enveloped and non-enveloped viruses. The chicken IFITM (chIFITM) genes are clustered on chromosome 5 and to date four genes have been annotated, namely chIFITM1, chIFITM3, chIFITM5 and chIFITM10. However, due to poor assembly of this locus in the Gallus Gallus v4 genome, accurate characterization has so far proven problematic. Recently, a new chicken reference genome assembly Gallus Gallus v5 was generated using Sanger, 454, Illumina and PacBio sequencing technologies identifying considerable differences in the chIFITM locus over the previous genome releases.We re-sequenced the locus using both Illumina MiSeq and PacBio RS II sequencing technologies and we mapped RNA-seq data from the European Nucleotide Archive (ENA) to this finalized chIFITM locus. Using SureSelect probes capture probes designed to the finalized chIFITM locus, we sequenced the locus of a different chicken breed, namely a White Leghorn, and a turkey.We confirmed the Gallus Gallus v5 consensus except for two insertions of 5 and 1 base pair within the chIFITM3 and B4GALNT4 genes, respectively, and a single base pair deletion within the B4GALNT4 gene. The pull down revealed a single amino acid substitution of A63V in the CIL domain of IFITM2 compared to Red Jungle fowl and 13, 13 and 11 differences between IFITM1, 2 and 3 of chickens and turkeys, respectively. RNA-seq shows chIFITM2 and chIFITM3 expression in numerous tissue types of different chicken breeds and avian cell lines, while the expression of the putative chIFITM1 is limited to the testis, caecum and ileum tissues.Locus resequencing using these capture probes and RNA-seq based expression analysis will allow the further characterization of genetic diversity within Galliformes.


September 22, 2019  |  

Diverse antibiotic resistance genes in dairy cow manure.

Application of manure from antibiotic-treated animals to crops facilitates the dissemination of antibiotic resistance determinants into the environment. However, our knowledge of the identity, diversity, and patterns of distribution of these antibiotic resistance determinants remains limited. We used a new combination of methods to examine the resistome of dairy cow manure, a common soil amendment. Metagenomic libraries constructed with DNA extracted from manure were screened for resistance to beta-lactams, phenicols, aminoglycosides, and tetracyclines. Functional screening of fosmid and small-insert libraries identified 80 different antibiotic resistance genes whose deduced protein sequences were on average 50 to 60% identical to sequences deposited in GenBank. The resistance genes were frequently found in clusters and originated from a taxonomically diverse set of species, suggesting that some microorganisms in manure harbor multiple resistance genes. Furthermore, amid the great genetic diversity in manure, we discovered a novel clade of chloramphenicol acetyltransferases. Our study combined functional metagenomics with third-generation PacBio sequencing to significantly extend the roster of functional antibiotic resistance genes found in animal gut bacteria, providing a particularly broad resource for understanding the origins and dispersal of antibiotic resistance genes in agriculture and clinical settings. IMPORTANCE The increasing prevalence of antibiotic resistance among bacteria is one of the most intractable challenges in 21st-century public health. The origins of resistance are complex, and a better understanding of the impacts of antibiotics used on farms would produce a more robust platform for public policy. Microbiomes of farm animals are reservoirs of antibiotic resistance genes, which may affect distribution of antibiotic resistance genes in human pathogens. Previous studies have focused on antibiotic resistance genes in manures of animals subjected to intensive antibiotic use, such as pigs and chickens. Cow manure has received less attention, although it is commonly used in crop production. Here, we report the discovery of novel and diverse antibiotic resistance genes in the cow microbiome, demonstrating that it is a significant reservoir of antibiotic resistance genes. The genomic resource presented here lays the groundwork for understanding the dispersal of antibiotic resistance from the agroecosystem to other settings.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.