Menu
June 1, 2021  |  

Advances in sequence consensus and clustering algorithms for effective de novo assembly and haplotyping applications.

One of the major applications of DNA sequencing technology is to bring together information that is distant in sequence space so that understanding genome structure and function becomes easier on a large scale. The Single Molecule Real Time (SMRT) Sequencing platform provides direct sequencing data that can span several thousand bases to tens of thousands of bases in a high-throughput fashion. In contrast to solving genomic puzzles by patching together smaller piece of information, long sequence reads can decrease potential computation complexity by reducing combinatorial factors significantly. We demonstrate algorithmic approaches to construct accurate consensus when the differences between reads are dominated by insertions and deletions. High-performance implementations of such algorithms allow more efficient de novo assembly with a pre-assembly step that generates highly accurate, consensus-based reads which can be used as input for existing genome assemblers. In contrast to recent hybrid assembly approach, only a single ~10 kb or longer SMRTbell library is necessary for the hierarchical genome assembly process (HGAP). Meanwhile, with a sensitive read-clustering algorithm with the consensus algorithms, one is able to discern haplotypes that differ by less than 1% different from each other over a large region. One of the related applications is to generate accurate haplotype sequences for HLA loci. Long sequence reads that can cover the whole 3 kb to 4 kb diploid genomic regions will simplify the haplotyping process. These algorithms can also be applied to resolve individual populations within mixed pools of DNA molecules that are similar to each, e.g., by sequencing viral quasi-species samples.


June 1, 2021  |  

Resolving the ‘dark matter’ in genomes.

Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.


June 1, 2021  |  

Complete telomere-to-telomere de novo assembly of the Plasmodium falciparum genome using long-read sequencing

Sequence-based estimation of genetic diversity of Plasmodium falciparum, the most lethal malarial parasite, has proved challenging due to a lack of a complete genomic assembly. The skewed AT-richness (~80.6% (A+T)) of its genome and the lack of technology to assemble highly polymorphic sub-telomeric regions that contain clonally variant, multigene virulence families (i.e. var and rifin) have confounded attempts using short-read NGS technologies. Using single molecule, real-time (SMRT) sequencing, we successfully compiled all 14 nuclear chromosomes of the P. falciparum genome from telomere-to-telomere in single contigs. Specifically, amplification-free sequencing generated reads of average length 12 kb, with =50% of the reads between 15.5 and 50 kb in length. A hierarchical genome assembly process (HGAP), was used to assemble the P. falciparum genome de novo. This assembly accurately resolved centromeres (~90-99% (A+T)) and sub-telomeric regions, and identified large insertions and duplications in the genome that added extra genes to the var and rifin virulence families, along with smaller structural variants such as homopolymer tract expansions. These regions can be used as markers for genetic diversity during comparative genome analyses. Moreover, identifying the polymorphic and repetitive sub-telomeric sequences of parasite populations from endemic areas might inform the link between structural variation and phenotypes such as virulence, drug resistance and disease transmission.


June 1, 2021  |  

Low-input single molecule HiFi sequencing for metagenomic samples

HiFi sequencing on the PacBio Sequel II System enables complete microbial community profiling of complex metagenomic samples using whole genome shotgun sequences. With HiFi sequencing, highly accurate long reads overcome the challenges posed by the presence of intergenic and extragenic repeat elements in microbial genomes, thus greatly improving phylogenetic profiling and sequence assembly. Recent improvements in library construction protocols enable HiFi sequencing starting from as low as 5 ng of input DNA. Here, we demonstrate comparative analyses of a control sample of known composition and a human fecal sample from varying amounts of input genomic DNA (1 ug, 200 ng, 5 ng), and present the corresponding library preparation workflows for standard, low input, and Ultra-Low methods. We demonstrate that the metagenome assembly, taxonomic assignment, and gene finding analyses are comparable across all methods for both samples, providing access to HiFi sequencing even for DNA-limited sample types.


April 21, 2020  |  

Benchmarking Transposable Element Annotation Methods for Creation of a Streamlined, Comprehensive Pipeline

Sequencing technology and assembly algorithms have matured to the point that high-quality de novo assembly is possible for large, repetitive genomes. Current assemblies traverse transposable elements (TEs) and allow for annotation of TEs. There are numerous methods for each class of elements with unknown relative performance metrics. We benchmarked existing programs based on a curated library of rice TEs. Using the most robust programs, we created a comprehensive pipeline called Extensive de-novo TE Annotator (EDTA) that produces a condensed TE library for annotations of structurally intact and fragmented elements. EDTA is open-source and freely available: https://github.com/oushujun/EDTA.List of abbreviationsTETransposable ElementsLTRLong Terminal RepeatLINELong Interspersed Nuclear ElementSINEShort Interspersed Nuclear ElementMITEMiniature Inverted Transposable ElementTIRTerminal Inverted RepeatTSDTarget Site DuplicationTPTrue PositivesFPFalse PositivesTNTrue NegativeFNFalse NegativesGRFGeneric Repeat FinderEDTAExtensive de-novo TE Annotator


April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.


April 21, 2020  |  

Genome sequence resources for four phytopathogenic fungi from the Colletotrichum orbiculare species complex.

Colletotrichum orbiculare species complex fungi are hemibiotrophic plant pathogens that cause anthracnose of field crops and weeds. Members of this group have genomes that are remarkably expanded relative to other Colletotrichum fungi and compartmentalized into AT-rich, gene poor and GC-rich, gene rich regions. Here we present an updated version of the Colletotrichum orbiculare genome, as well as draft genomes of three other members from the C. orbiculare species complex; the alfalfa pathogen Colletotrichum trifolii, the prickly mallow pathogen Colletotrichum sidae and the burweed pathogen Colletotrichum spinosum. The data reported here will be important for comparative genomics analyses to identify factors that play a role in the evolution and maintenance of the expanded, compartmentalized genomes of these fungi which may contribute to their pathogenicity.


April 21, 2020  |  

Centromere-mediated chromosome break drives karyotype evolution in closely related Malassezia species

Intra-chromosomal or inter-chromosomal genomic rearrangements often lead to speciation. Loss or gain of a centromere leads to alterations in chromosome number in closely related species. Thus, centromeres can enable tracing the path of evolution from the ancestral to a derived state. The Malassezia species complex of the phylum Basiodiomycota shows remarkable diversity in chromosome number ranging between six and nine chromosomes. To understand these transitions, we experimentally identified all eight centromeres as binding sites of an evolutionarily conserved outer kinetochore protein Mis12/Mtw1 in M. sympodialis. The 3 to 5 kb centromere regions share an AT-rich, poorly transcribed core region enriched with a 12 bp consensus motif. We also mapped nine such AT-rich centromeres in M. globosa and the related species Malassezia restricta and Malassezia slooffiae. While eight predicted centromeres were found within conserved synteny blocks between these species and M. sympodialis, the remaining centromere in M. globosa (MgCEN2) or its orthologous centromere in M. slooffiae (MslCEN4) and M. restricta (MreCEN8) mapped to a synteny breakpoint compared with M. sympodialis. Taken together, we provide evidence that breakage and loss of a centromere (CEN2) in an ancestral Malassezia species possessing nine chromosomes resulted in fewer chromosomes in M. sympodialis. Strikingly, the predicted centromeres of all closely related Malassezia species map to an AT-rich core on each chromosome that also shows enrichment of the 12 bp sequence motif. We propose that centromeres are fragile AT-rich sites driving karyotype diversity through breakage and inactivation in these and other species.


April 21, 2020  |  

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59?kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.


April 21, 2020  |  

Early Sex-chromosome Evolution in the Diploid Dioecious Plant Mercurialis annua.

Suppressed recombination allows divergence between homologous sex chromosomes and the functionality of their genes. Here, we reveal patterns of the earliest stages of sex-chromosome evolution in the diploid dioecious herb Mercurialis annua on the basis of cytological analysis, de novo genome assembly and annotation, genetic mapping, exome resequencing of natural populations, and transcriptome analysis. The genome assembly contained 34,105 expressed genes, of which 10,076 were assigned to linkage groups. Genetic mapping and exome resequencing of individuals across the species range both identified the largest linkage group, LG1, as the sex chromosome. Although the sex chromosomes of M. annua are karyotypically homomorphic, we estimate that about a third of the Y chromosome has ceased recombining, containing 568 transcripts and spanning 22.3 cM in the corresponding female map. Nevertheless, we found limited evidence for Y-chromosome degeneration in terms of gene loss and pseudogenization, and most X- and Y-linked genes appear to have diverged in the period subsequent to speciation between M. annua and its sister species M. huetii which shares the same sex-determining region. Taken together, our results suggest that the M. annua Y chromosome has at least two evolutionary strata: a small old stratum shared with M. huetii, and a more recent larger stratum that is probably unique to M. annua and that stopped recombining about one million years ago. Patterns of gene expression within the non-recombining region are consistent with the idea that sexually antagonistic selection may have played a role in favoring suppressed recombination.Copyright © 2019, Genetics.


April 21, 2020  |  

Cellular Dynamics and Genomic Identity of Centromeres in Cereal Blast Fungus.

Precise kinetochore-microtubule interactions ensure faithful chromosome segregation in eukaryotes. Centromeres, identified as scaffolding sites for kinetochore assembly, are among the most rapidly evolving chromosomal loci in terms of the DNA sequence and length and organization of intrinsic elements. Neither the centromere structure nor the kinetochore dynamics is well studied in plant-pathogenic fungi. Here, we sought to understand the process of chromosome segregation in the rice blast fungus Magnaporthe oryzae High-resolution imaging of green fluorescent protein (GFP)-tagged inner kinetochore proteins CenpA and CenpC revealed unusual albeit transient declustering of centromeres just before anaphase separation of chromosomes in M. oryzae Strikingly, the declustered centromeres positioned randomly at the spindle midzone without an apparent metaphase plate per se Using CenpA chromatin immunoprecipitation followed by deep sequencing, all seven centromeres in M. oryzae were found to be regional, spanning 57-kb to 109-kb transcriptionally poor regions. Highly AT-rich and heavily methylated DNA sequences were the only common defining features of all the centromeres in rice blast. Lack of centromere-specific DNA sequence motifs or repetitive elements suggests an epigenetic specification of centromere function in M. oryzae PacBio genome assemblies and synteny analyses facilitated comparison of the centromeric/pericentromeric regions in distinct isolates of rice blast and wheat blast and in Magnaporthiopsis poae Overall, this study revealed unusual centromere dynamics and precisely identified the centromere loci in the top model fungal pathogens that belong to Magnaporthales and cause severe losses in the global production of food crops and turf grasses.IMPORTANCEMagnaporthe oryzae is an important fungal pathogen that causes a loss of 10% to 30% of the annual rice crop due to the devastating blast disease. In most organisms, kinetochores are clustered together or arranged at the metaphase plate to facilitate synchronized anaphase separation of sister chromatids in mitosis. In this study, we showed that the initially clustered kinetochores separate and position randomly prior to anaphase in M. oryzae Centromeres in M. oryzae occupy large genomic regions and form on AT-rich DNA without any common sequence motifs. Overall, this study identified atypical kinetochore dynamics and mapped functional centromeres in M. oryzae to define the roles of centromeric and pericentric boundaries in kinetochore assembly on epigenetically specified centromere loci. This study should pave the way for further understanding of the contribution of heterochromatin in genome stability and virulence of the blast fungus and its related species of high economic importance.Copyright © 2019 Yadav et al.


April 21, 2020  |  

Characterizing the major structural variant alleles of the human genome.

In order to provide a comprehensive resource for human structural variants (SVs), we generated long-read sequence data and analyzed SVs for fifteen human genomes. We sequence resolved 99,604 insertions, deletions, and inversions including 2,238 (1.6 Mbp) that are shared among all discovery genomes with an additional 13,053 (6.9 Mbp) present in the majority, indicating minor alleles or errors in the reference. Genotyping in 440 additional genomes confirms the most common SVs in unique euchromatin are now sequence resolved. We report a ninefold SV bias toward the last 5 Mbp of human chromosomes with nearly 55% of all VNTRs (variable number of tandem repeats) mapping to this portion of the genome. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. Copyright © 2018 Elsevier Inc. All rights reserved.


April 21, 2020  |  

Genetic Variation, Comparative Genomics, and the Diagnosis of Disease.

The discovery of mutations associated with human genetic dis- ease is an exercise in comparative genomics (see Glossary). Although there are many different strategies and approaches, the central premise is that affected persons harbor a significant excess of pathogenic DNA variants as com- pared with a group of unaffected persons (controls) that is either clinically defined1 or established by surveying large swaths of the general population.2 The more exclu- sive the variant is to the disease, the greater its penetrance, the larger its effect size, and the more relevant it becomes to both disease diagnosis and future therapeutic investigation. The most popular approach used by researchers in human genetics is the case–control design, but there are others that can be used to track variants and disease in a family context or that consider the probability of different classes of mutations based on evolutionary patterns of divergence or de novo mutational change.3,4 Although the approaches may be straightforward, the discovery of patho- genic variation and its mechanism of action often is less trivial, and decades of research can be required in order to identify the variants underlying both mendelian and complex genetic traits.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.