April 21, 2020  |  

The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor.

The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpPADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpPADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.Copyright © 2019 American Society for Microbiology.


April 21, 2020  |  

Shared and unique microbes between Small hive beetles (Aethina tumida) and their honey bee hosts.

The small hive beetle (SHB) is an opportunistic parasite that feeds on bee larvae, honey, and pollen. While SHBs can also feed on fruit and other plant products, like its plant-feeding relatives, SHBs prefer to feed on hive resources and only reproduce inside bee colonies. As parasites, SHBs are inevitably exposed to bee-associated microbes, either directly from the bees or from the hive environment. These microbes have unknown impacts on beetles, nor is it known how extensively beetles transfer microbes among their bee hosts. To identify sets of beetle microbes and the transmission of microbes from bees to beetles, a metagenomic analysis was performed. We identified sets of herbivore-associated bacteria, as well as typical bee symbiotic bacteria for pollen digestion, in SHB larvae and adults. Deformed wing virus was highly abundant in beetles, which colonize SHBs as suggested by a controlled feeding trial. Our data suggest SHBs are vectors for pathogen transmission among bees and between colonies. The dispersal of host pathogens by social parasites via floral resources and the hive environment increases the threats of these parasites to honey bees. © 2019 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


April 21, 2020  |  

Toxin and genome evolution in a Drosophila defensive symbiosis.

Defenses conferred by microbial symbionts play a vital role in the health and fitness of their animal hosts. An important outstanding question in the study of defensive symbiosis is what determines long term stability and effectiveness against diverse natural enemies. In this study, we combine genome and transcriptome sequencing, symbiont transfection and parasite protection experiments, and toxin activity assays to examine the evolution of the defensive symbiosis between Drosophila flies and their vertically transmitted Spiroplasma bacterial symbionts, focusing in particular on ribosome-inactivating proteins (RIPs), symbiont-encoded toxins that have been implicated in protection against both parasitic wasps and nematodes. Although many strains of Spiroplasma, including the male-killing symbiont (sMel) of Drosophila melanogaster, protect against parasitic wasps, only the strain (sNeo) that infects the mycophagous fly Drosophila neotestacea appears to protect against parasitic nematodes. We find that RIP repertoire is a major differentiating factor between strains that do and do not offer nematode protection, and that sMel RIPs do not show activity against nematode ribosomes in vivo. We also discovered a strain of Spiroplasma infecting a mycophagous phorid fly, Megaselia nigra. Although both the host and its Spiroplasma are distantly related to D. neotestacea and its symbiont, genome sequencing revealed that the M. nigra symbiont encodes abundant and diverse RIPs, including plasmid-encoded toxins that are closely related to the RIPs in sNeo. Our results suggest that distantly related Spiroplasma RIP toxins may perform specialized functions with regard to parasite specificity and suggest an important role for horizontal gene transfer in the emergence of novel defensive phenotypes.


April 21, 2020  |  

Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots.

Root-associated microbes play a key role in plant performance and productivity, making them important players in agroecosystems. So far, very few studies have assessed the impact of different farming systems on the root microbiota and it is still unclear whether agricultural intensification influences the structure and complexity of microbial communities. We investigated the impact of conventional, no-till, and organic farming on wheat root fungal communities using PacBio SMRT sequencing on samples collected from 60 farmlands in Switzerland. Organic farming harbored a much more complex fungal network with significantly higher connectivity than conventional and no-till farming systems. The abundance of keystone taxa was the highest under organic farming where agricultural intensification was the lowest. We also found a strong negative association (R2?=?0.366; P?


April 21, 2020  |  

Petunia-and Arabidopsis-Specific Root Microbiota Responses to Phosphate Supplementation

Phosphorus (P) is a limiting element for plant growth. Several root microbes, including arbuscular mycorrhizal fungi (AMF), have the capacity to improve plant nutrition and their abundance is known to depend on P fertility. However, how complex root-associated bacterial and fungal communities respond to various levels of P supplementation remains ill-defined. Here we investigated the responses of the root-associated bacteria and fungi to varying levels of P supply using 16S rRNA gene and internal transcribed spacer amplicon sequencing. We grew Petunia, which forms symbiosis with AMF, and the nonmycorrhizal model species Arabidopsis as a control in a soil that is limiting in plant-available P and we then supplemented the plants with complete fertilizer solutions that varied only in their phosphate concentrations. We searched for microbes, whose abundances varied by P fertilization, tested whether a core microbiota responding to the P treatments could be identified and asked whether bacterial and fungal co-occurrence patterns change in response to the varying P levels. Root microbiota composition varied substantially in response to the varying P application. A core microbiota was not identified as different bacterial and fungal groups responded to low-P conditions in Arabidopsis and Petunia. Microbes with P-dependent abundance patterns included Mortierellomycotina in Arabidopsis, while in Petunia, they included AMF and their symbiotic endobacteria. Of note, the P-dependent root colonization by AMF was reliably quantified by sequencing. The fact that the root microbiotas of the two plant species responded differently to low-P conditions suggests that plant species specificity would need to be considered for the eventual development of microbial products that improve plant P nutrition.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.