June 1, 2021  |  

The resurgence of reference quality genome sequence.

Since the advent of Next-Generation Sequencing (NGS), the cost of de novo genome sequencing and assembly have dropped precipitately, which has spurred interest in genome sequencing overall. Unfortunately the contiguity of the NGS assembled sequences, as well as the accuracy of these assemblies have suffered. Additionally, most NGS de novo assemblies leave large portions of genomes unresolved, and repetitive regions are often collapsed. When compared to the reference quality genome sequences produced before the NGS era, the new sequences are highly fragmented and often prove to be difficult to properly annotate. In some cases the contiguous portions are smaller than the average gene size making the sequence not nearly as useful for biologists as the earlier reference quality genomes including of Human, Mouse, C. elegans, or Drosophila. Recently, new 3rd generation sequencing technologies, long-range molecular techniques, and new informatics tools have facilitated a return to high quality assembly. We will discuss the capabilities of the technologies and assess their impact on assembly projects across the tree of life from small microbial and fungal genomes through large plant and animal genomes. Beyond improvements to contiguity, we will focus on the additional biological insights that can be made with better assemblies, including more complete analysis genes in their flanking regulatory context, in-depth studies of transposable elements and other complex gene families, and long-range synteny analysis of entire chromosomes. We will also discuss the need for new algorithms for representing and analyzing collections of many complete genomes at once.

June 1, 2021  |  

Genome in a Bottle: You’ve sequenced. How well did you do?

Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group is adapting these methods and developing new methods to characterize 2 families, one Asian and one Ashkenazi Jewish from the Personal Genome Project, which are consented for public release of sequencing and phenotype data. We have generated a larger and even more diverse data set on these samples, including high-depth Illumina paired-end and mate-pair, Complete Genomics, and Ion Torrent short-read data, as well as Moleculo, 10X, Oxford Nanopore, PacBio, and BioNano Genomics long-read data. We are analyzing these data to provide an accurate assessment of not just small variants but also large structural variants (SVs) in both “easy” regions of the genome and in some “hard” repetitive regions. We have also made all of the input data sources publicly available for download, analysis, and publication.Results: Our arbitration method produced a reference data set of 2,787,291 single nucleotide variants (SNVs), 365,135 indels, 2744 SVs, and 2.2 billion homozygous reference calls for our pilot genome. We found that our call set is highly sensitive and specific in comparison to independent reference data sets. We have also generated preliminary assemblies and structural variant calls for the next 2 trios from long read data and are currently integrating and validating these.Discussion: We combined the strengths of each of our input datasets to develop a comprehensive and accurate benchmark call set. In the short time it has been available, over 20 published or submitted papers have used our data. Many challenges exist in comparing to our benchmark calls, and thus we have worked with the Global Alliance for Genomics and Health to develop standardized methods, performance metrics, and software to assist in its use.[1] Zook et al, Nat Biotech. 2014.

June 1, 2021  |  

Whole gene sequencing of KIR-3DL1 with SMRT Sequencing and the distribution of allelic variants in different ethnic groups

The killer-cell immunoglobulin-like receptor (KIR) gene family are involved in immune modulation during viral infection, autoimmune disease and in allogeneic stem cell transplantation. Most KIR gene diversity studies and their impact on the transplant outcome is performed by gene absence/presence assays. However, it is well known that KIR gene allelic variations have biological significance. Allele level typing of KIR genes has been very challenging until recently due to the homologous nature of those genes and very long intronic sequences. SMRT (Single Molecule Real-Time) Sequencing generates average long reads of 10 to 15 kb and allows us to obtain in-phase long sequence reads. We have developed a PCR assay for SMRT Sequencing on the PacBio RS II platform in our lab for 3DL1 whole gene sequencing. This approach allows us to obtain allele level typing for 3DL1 genes and could serve as a model to type other KIR genes at allelic level.

June 1, 2021  |  

Characterizing haplotype diversity at the immunoglobulin heavy chain locus across human populations using novel long-read sequencing and assembly approaches

The human immunoglobulin heavy chain locus (IGH) remains among the most understudied regions of the human genome. Recent efforts have shown that haplotype diversity within IGH is elevated and exhibits population specific patterns; for example, our re-sequencing of the locus from only a single chromosome uncovered >100 Kb of novel sequence, including descriptions of six novel alleles, and four previously unmapped genes. Historically, this complex locus architecture has hindered the characterization of IGH germline single nucleotide, copy number, and structural variants (SNVs; CNVs; SVs), and as a result, there remains little known about the role of IGH polymorphisms in inter-individual antibody repertoire variability and disease. To remedy this, we are taking a multi-faceted approach to improving existing genomic resources in the human IGH region. First, from whole-genome and fosmid-based datasets, we are building the largest and most ethnically diverse set of IGH reference assemblies to date, by employing PacBio long-read sequencing combined with novel algorithms for phased haplotype assembly. In total, our effort will result in the characterization of >15 phased haplotypes from individuals of Asian, African, and European descent, to be used as a representative reference set by the genomics and immunogenetics community. Second, we are utilizing this more comprehensive sequence catalogue to inform the design and analysis of novel targeted IGH genotyping assays. Standard targeted DNA enrichment methods (e.g., exome capture) are currently optimized for the capture of only very short (100’s of bp) DNA segments. Our platform uses a modified bench protocol to pair existing capture-array technologies with the enrichment of longer fragments of DNA, enabling the use of PacBio sequencing of DNA segments up to 7 Kb. This substantial increase in contiguity disambiguates many of the complex repeated structures inherent to the locus, while yielding the base pair fidelity required to call SNVs. Together these resources will establish a stronger framework for further characterizing IGH genetic diversity and facilitate IGH genomic profiling in the clinical and research settings, which will be key to fully understanding the role of IGH germline variation in antibody repertoire development and disease.

June 1, 2021  |  

Improving the reference with a diversity panel of sequence-resolved structural variation

Although the accuracy of the human reference genome is critical for basic and clinical research, structural variants (SVs) have been difficult to assess because data capable of resolving them have been limited. To address potential bias, we sequenced a diversity panel of nine human genomes to high depth using long-read, single-molecule, real-time sequencing data. Systematically identifying and merging SVs =50 bp in length for these nine and one public genome yielded 83,909 sequence-resolved insertions, deletions, and inversions. Among these, 2,839 (2.0 Mbp) are shared among all discovery genomes with an additional 13,349 (6.9 Mbp) present in the majority of humans, indicating minor alleles or errors in the reference, which is partially explained by an enrichment for GC-content and repetitive DNA. Genotyping 83% of these in 290 additional genomes confirms that at least one allele of the most common SVs in unique euchromatin are now sequence-resolved. We observe a 9-fold increase within 5 Mbp of chromosome telomeric ends and correlation with de novo single-nucleotide variant mutations showing that such variation is nonrandomly distributed defining potential hotspots of mutation. We identify SVs affecting coding and noncoding regulatory loci improving annotation and interpretation of functional variation. To illustrate the utility of sequence-resolved SVs in resequencing experiments, we mapped 30 diverse high-coverage Illumina-sequenced samples to GRCh38 with and without contigs containing SV insertions as alternate sequences, and we found these additional sequences recover 6.4% of unmapped reads. For reads mapped within the SV insertion, 25.7% have a better mapping quality, and 18.7% improved by 1,000-fold or more. We reveal 72,964 occurrences of 15,814 unique variants that were not discoverable with the reference sequence alone, and we note that 7% of the insertions contain an SV in at least one sample indicating that there are additional alleles in the population that remain to be discovered. These data provide the framework to construct a canonical human reference and a resource for developing advanced representations capable of capturing allelic diversity. We present a summary of our findings and discuss ideas for revealing variation that was once difficult to ascertain.

February 5, 2021  |  

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo),…

April 21, 2020  |  

Chromosome-length haplotigs for yak and cattle from trio binning assembly of an F1 hybrid

Background Assemblies of diploid genomes are generally unphased, pseudo-haploid representations that do not correctly reconstruct the two parental haplotypes present in the individual sequenced. Instead, the assembly alternates between parental haplotypes and may contain duplications in regions where the parental haplotypes are sufficiently different. Trio binning is an approach to genome assembly that uses short reads from both parents to classify long reads from the offspring according to maternal or paternal haplotype origin, and is thus helped rather than impeded by heterozygosity. Using this approach, it is possible to derive two assemblies from an individual, accurately representing both parental contributions in their entirety with higher continuity and accuracy than is possible with other methods.Results We used trio binning to assemble reference genomes for two species from a single individual using an interspecies cross of yak (Bos grunniens) and cattle (Bos taurus). The high heterozygosity inherent to interspecies hybrids allowed us to confidently assign >99% of long reads from the F1 offspring to parental bins using unique k-mers from parental short reads. Both the maternal (yak) and paternal (cattle) assemblies contain over one third of the acrocentric chromosomes, including the two largest chromosomes, in single haplotigs.Conclusions These haplotigs are the first vertebrate chromosome arms to be assembled gap-free and fully phased, and the first time assemblies for two species have been created from a single individual. Both assemblies are the most continuous currently available for non-model vertebrates.MbmegabaseskbkilobasesMYAmillions of years agoMHCmajor histocompatibility complexSMRTsingle molecule real time

April 21, 2020  |  

Whole genome sequence of first Candida auris strain, isolated in Russia.

Candida auris is an emergent yeast pathogen, easily transmissible between patients and with high percent of multidrug resistant strains. Here we present a draft genome sequence of the first known Russian strain of C. auris, isolated from a case of candidemia. The strain clustered within South Asian C. auris clade and seemingly represented an independent event of dissemination from the original species range. Observed fluconazole resistance was probably due to F105L and K143R mutations in ERG11. © The Author(s) 2019. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology.

April 21, 2020  |  

The Chinese chestnut genome: a reference for species restoration

Forest tree species are increasingly subject to severe mortalities from exotic pests, diseases, and invasive organisms, accelerated by climate change. Forest health issues are threatening multiple species and ecosystem sustainability globally. While sources of resistance may be available in related species, or among surviving trees, introgression of resistance genes into threatened tree species in reasonable time frames requires genome-wide breeding tools. Asian species of chestnut (Castanea spp.) are being employed as donors of disease resistance genes to restore native chestnut species in North America and Europe. To aid in the restoration of threatened chestnut species, we present the assembly of a reference genome with chromosome-scale sequences for Chinese chestnut (C. mollissima), the disease-resistance donor for American chestnut restoration. We also demonstrate the value of the genome as a platform for research and species restoration, including new insights into the evolution of blight resistance in Asian chestnut species, the locations in the genome of ecologically important signatures of selection differentiating American chestnut from Chinese chestnut, the identification of candidate genes for disease resistance, and preliminary comparisons of genome organization with related species.

April 21, 2020  |  

Insect genomes: progress and challenges.

In the wake of constant improvements in sequencing technologies, numerous insect genomes have been sequenced. Currently, 1219 insect genome-sequencing projects have been registered with the National Center for Biotechnology Information, including 401 that have genome assemblies and 155 with an official gene set of annotated protein-coding genes. Comparative genomics analysis showed that the expansion or contraction of gene families was associated with well-studied physiological traits such as immune system, metabolic detoxification, parasitism and polyphagy in insects. Here, we summarize the progress of insect genome sequencing, with an emphasis on how this impacts research on pest control. We begin with a brief introduction to the basic concepts of genome assembly, annotation and metrics for evaluating the quality of draft assemblies. We then provide an overview of genome information for numerous insect species, highlighting examples from prominent model organisms, agricultural pests and disease vectors. We also introduce the major insect genome databases. The increasing availability of insect genomic resources is beneficial for developing alternative pest control methods. However, many opportunities remain for developing data-mining tools that make maximal use of the available insect genome resources. Although rapid progress has been achieved, many challenges remain in the field of insect genomics. © 2019 The Royal Entomological Society.

April 21, 2020  |  

High satellite repeat turnover in great apes studied with short- and long-read technologies.

Satellite repeats are a structural component of centromeres and telomeres, and in some instances their divergence is known to drive speciation. Due to their highly repetitive nature, satellite sequences have been understudied and underrepresented in genome assemblies. To investigate their turnover in great apes, we studied satellite repeats of unit sizes up to 50?bp in human, chimpanzee, bonobo, gorilla, and Sumatran and Bornean orangutans, using unassembled short and long sequencing reads. The density of satellite repeats, as identified from accurate short reads (Illumina), varied greatly among great ape genomes. These were dominated by a handful of abundant repeated motifs, frequently shared among species, which formed two groups: (1) the (AATGG)n repeat (critical for heat shock response) and its derivatives; and (2) subtelomeric 32-mers involved in telomeric metabolism. Using the densities of abundant repeats, individuals could be classified into species. However clustering did not reproduce the accepted species phylogeny, suggesting rapid repeat evolution. Several abundant repeats were enriched in males vs. females; using Y chromosome assemblies or FIuorescent In Situ Hybridization, we validated their location on the Y. Finally, applying a novel computational tool, we identified many satellite repeats completely embedded within long Oxford Nanopore and Pacific Biosciences reads. Such repeats were up to 59?kb in length and consisted of perfect repeats interspersed with other similar sequences. Our results based on sequencing reads generated with three different technologies provide the first detailed characterization of great ape satellite repeats, and open new avenues for exploring their functions. © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

April 21, 2020  |  

Genome-wide selection footprints and deleterious variations in young Asian allotetraploid rapeseed.

Brassica napus (AACC, 2n = 38) is an important oilseed crop grown worldwide. However, little is known about the population evolution of this species, the genomic difference between its major genetic groups, such as European and Asian rapeseed, and the impacts of historical large-scale introgression events on this young tetraploid. In this study, we reported the de novo assembly of the genome sequences of an Asian rapeseed (B. napus), Ningyou 7, and its four progenitors and compared these genomes with other available genomic data from diverse European and Asian cultivars. Our results showed that Asian rapeseed originally derived from European rapeseed but subsequently significantly diverged, with rapid genome differentiation after hybridization and intensive local selective breeding. The first historical introgression of B. rapa dramatically broadened the allelic pool but decreased the deleterious variations of Asian rapeseed. The second historical introgression of the double-low traits of European rapeseed (canola) has reshaped Asian rapeseed into two groups (double-low and double-high), accompanied by an increase in genetic load in the double-low group. This study demonstrates distinctive genomic footprints and deleterious SNP (single nucleotide polymorphism) variants for local adaptation by recent intra- and interspecies introgression events and provides novel insights for understanding the rapid genome evolution of a young allopolyploid crop. © 2019 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.