X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Thursday, January 7, 2021

Whitepaper: Structural variation in the human genome

Structural variation accounts for much of the variation among human genomes. Structural variants of all types are known to cause Mendelian disease and contribute to complex disease. Learn how long-read sequencing is enabling detection of the full spectrum of structural variants to advance the study of human disease, evolution and genetic diversity.

Read More »

Wednesday, January 6, 2021

Video: Overview of SMRT technology

PacBio’s SMRT technology harnesses the natural process of DNA replication, which is a highly efficient and accurate process. Our SMRT technology enables the observation of DNA synthesis as it occurs in real time.

Read More »

Wednesday, January 6, 2021

Labroots Webinar: More comprehensive views of human genetic variation

In this BioConference Live webinar, PacBio CSO Jonas Korlach highlights how multi-kilobase reads from SMRT Sequencing can resolve many of the previously considered ‘difficult-to-sequence’ genomic regions. The long reads also allow phasing of the sequence information along the maternal and paternal alleles, demonstrated by full-length, fully phased HLA class I & II gene sequencing. In addition, characterizing the complex landscape of alternative gene products is currently very difficult with short-read sequencing technologies, and he describes how long-read, full-length mRNA sequencing can be used to describe the diversity of transcript isoforms, with no assembly required. Lastly, in the exciting area of…

Read More »

Wednesday, January 6, 2021

AGBT PacBio Workshop: Full workshop recording

PacBio customers and thought leaders discuss the role SMRT sequencing is playing in comprehensive genomics: past, present, and future. Featuring J. Craig Venter, Gene Myers, Deanna Church, Jeong-Sun Seo and W. Richard McCombie.

Read More »

Wednesday, January 6, 2021

AGBT 2015 Highlights: Customer interviews day 1

PacBio customers discuss their applications of PacBio SMRT Sequencing and long reads, including Lemuel Racacho (Children’s Hospital of Eastern Ontario Research Institute), Matthew Blow (JGI), Yuta Suzuki (U. of Tokyo), Daniel Geraghty (Fred Hutchinson Cancer Center), and Mike Schatz (CSHL)

Read More »

Wednesday, January 6, 2021

ASHG Virtual Poster: De novo assembly of a diploid Asian genome

Yunfei Guo, from the University of Southern California, presents his ASHG 2015 poster on a de novo assembly of a diploid Asian genome. The uniform coverage of long-read sequencing helped access regions previously unresolvable due to high GC bias or long repeats. The assembly allowed scientists to fill some 400 gaps in the latest human reference genome, including some as long as 50 kb.

Read More »

Wednesday, January 6, 2021

Nature Webinar: Large interrupted pentanucleotide repeats of SCA10

Tetsuo Ashizawa, Director of the Neuroscience Research Program at Houston Methodist Research Institute, presents a novel amplification-free targeted enrichment method using CRISPR-Cas9 for the disease-causing repeat expansion in SCA10. Using long-read sequencing, he has been able to span multi-kilobase repetitive regions and identify interruption sequence motifs that correlate with alternative clinical phenotypes in individuals from varying ethnic backgrounds. Webinar registration required.

Read More »

Wednesday, January 6, 2021

Video: Using the Integrative Genomics Viewer (IGV) to visualize PacBio long-read SMRT Sequencing data

In this video, PacBio scientists present ongoing improvements to the Integrative Genomics Viewer (IGV) and demonstrate how multiple new features improve visualization support for PacBio long-read sequencing data. The video describes these recent updates which include; quick consensus accuracy mode to hide random single-molecule errors, direct phasing of haplotypes using long-read evidence, and visual annotation of insertions and deletions relative to the reference with enumeration of gap size for individual reads. These new features are available now in the development version of IGV, which can be found at http://software.broadinstitute.org/software/igv/download_snapshot. The Sequel sequencing data used in this demonstration is also publicly…

Read More »

Wednesday, January 6, 2021

ASHG Virtual Poster: The MHC Diversity in Africa Project (MDAP) pilot – 125 African high resolution HLA types from 5 populations

In this ASHG 2016 poster video, Martin Pollard from the Wellcome Trust Sanger Institute and the University of Cambridge describes an ambitious project to better represent natural variation in the complex MHC region by sequencing the locus in thousands of people from various populations in Africa. A pilot project in five populations has already revealed a lot of diversity in the region, which is important for human disease, vaccine response, and organ transplantation. Pollard says SMRT Sequencing is the only technology that can deliver the full-length haplotypes necessary to identify complete variation in this highly polymorphic complex. Plus: plans to…

Read More »

Wednesday, January 6, 2021

ASHG Virtual Poster: Effect of coverage depth and haplotype phasing on structural variant detection with PacBio long reads

PacBio bioinformatician Aaron Wenger presents this ASHG 2016 poster demonstrating human structural variation detection at varying coverage levels with SMRT Sequencing on the Sequel System. Results were compared to truth sets for well-characterized genomes. Results indicate that even low coverage of SMRT Sequencing makes it possible to detect hundreds of SVs that are missed in high-coverage short-read sequencing data.

Read More »

1 2 3 6

Subscribe for blog updates:

Archives