June 1, 2021  |  

Sequencing of expanded CGG repeats in the FMR1 gene.

Alleles of the FMR1 gene with more than 200 CGG repeats generally undergo methylation-coupled gene silencing, resulting in fragile X syndrome, the leading heritable form of cognitive impairment. Smaller expansions (55-200 CGG repeats) result in elevated levels of FMR1 mRNA, which is directly responsible for the late-onset neurodegenerative disorder, fragile X-associated tremor/ataxia syndrome (FXTAS). For mechanistic studies and genetic counseling, it is important to know with precision the number of CGG repeats; however, no existing DNA sequencing method is capable of sequencing through more than ~100 CGG repeats, thus limiting the ability to precisely characterize the disease-causing alleles. The recent development of single molecule, real-time sequencing represents a novel approach to DNA sequencing that couples the intrinsic processivity of DNA polymerase with the ability to read polymerase activity on a single-molecule basis. Further, the accuracy of the method is improved through the use of circular templates, such that each molecule can be read multiple times to produce a circular consensus sequence (CCS). We have succeeded in generating CCS reads representing multiple passes through both strands of repeat tracts exceeding 700 CGGs (>2 kb of 100 percent CG) flanked by native FMR1 sequence, with single-molecule readlengths exceeding 12 kb. This sequencing approach thus enables us to fully characterize the previously intractable CGG-repeat sequence, leading to a better understanding of the distinct associated molecular pathologies. Real-time kinetic data also provides insight into the activity of DNA polymerase inside this unique sequence. The methodology should be widely applicable for studies of the molecular pathogenesis of an increasing number of repeat expansion-associated neurodegenerative and neurodevelopmental disorders, and for the efficient identification of such disorders in the clinical setting.


June 1, 2021  |  

Single Molecule Real-Time (SMRT) Sequencing of genes implicated in autosomal recessive diseases.

In today’s clinical diagnostic laboratories, the detection of the disease causing mutations is either done through genotyping or Sanger sequencing. Whether done singly or in a multiplex assay, genotyping works only if the exact molecular change is known. Sanger sequencing is the gold standard method that captures both known and novel molecular changes in the disease gene of interest. Most clinical Sanger sequencing assays involve PCR-amplifying the coding sequences of the disease target gene followed by bi-directional sequencing of the amplified products. Therefore for every patient sample, one generates multiple amplicons singly and each amplicon leads to two separate sequencing reactions. Single Molecule, Real-Time (SMRT) sequencing offers several advantages to Sanger sequencing including long read lengths, first-in-first-out processing, fast time to result, high-levels of multiplexing and substantially reduced costs. For our first proof-of-concept experiment, we queried 3 known disease-associated mutations in de-identified clinical samples. We started off with 3 autosomal recessive diseases found at an increased frequency in the Ashkenazi Jewish population: Tay Sachs disease, Niemann-Pick disease and Canavan disease. The mutated gene in Tays Sachs is HEXA, Niemann-Pick is SMPD1 and Canavan is ASPA. Coding exons were amplified in multiple (6-13) amplicons for each gene from both non-carrier and carriers. Amplicons were purified, concentrations normalized, and combined prior to SMRTbell™ Library prep. A single SMRTbell library was sequenced for each gene from each patient using standard Pacific Biosciences C2 chemistry and protocols. Average read lengths of 4,000 bp across samples allowed for high-quality Circular Consensus Sequences (CCS) across all amplicons (all less than 1 kb). This high quality CCS data permitted the clean partitioning of reads from a patient in the presence of heterozygous events. Using non-carrier sequencing as a control, we were able to correctly identify the known events in carrier genes. This suggests the potential utility of SMRT sequencing in a clinical setting, enabling a cost-effective method of replacing targeted mutation detection with sequencing of the entire gene.


June 1, 2021  |  

Complete HIV-1 genomes from single molecules: Diversity estimates in two linked transmission pairs using clustering and mutual information.

We sequenced complete HIV-1 genomes from single molecules using Single Molecule, Real- Time (SMRT) Sequencing and derive de novo full-length genome sequences. SMRT sequencing yields long-read sequencing results from individual DNA molecules with a rapid time-to-result. These attributes make it a useful tool for continuous monitoring of viral populations. The single-molecule nature of the sequencing method allows us to estimate variant subspecies and relative abundances by counting methods. We detail mathematical techniques used in viral variant subspecies identification including clustering distance metrics and mutual information. Sequencing was performed in order to better understand the relationships between the specific sequences of transmitted viruses in linked transmission pairs. Samples representing HIV transmission pairs were selected from the Zambia Emory HIV Research Project (Lusaka, Zambia) and sequenced. We examine Single Genome Amplification (SGA) prepped samples and samples containing complex mixtures of genomes. Whole genome consensus estimates for each of the samples were made. Genome reads were clustered using a simple distance metric on aligned reads. Appropriate thresholds were chosen to yield distinct clusters of HIV genomes within samples. Mutual information between columns in the genome alignments was used to measure dependence. In silico mixtures of reads from the SGA samples were made to simulate samples containing exactly controlled complex mixtures of genomes and our clustering methods were applied to these complex mixtures. SMRT Sequencing data contained multiple full-length (greater than 9 kb) continuous reads for each sample. Simple whole genome consensus estimates easily identified transmission pairs. The clustering of the genome reads showed diversity differences between the samples, allowing us to characterize the diversity of the individual quasi-species comprising the patient viral populations across the full genome. Mutual information identified possible dependencies of different positions across the full HIV-1 genome. The SGA consensus genomes agreed with prior Sanger sequencing. Our clustering methods correctly segregated reads to their correct originating genome for the synthetic SGA mixtures. The results open up the potential for reference-agnostic and cost effective full genome sequencing of HIV-1.


June 1, 2021  |  

Allele-level sequencing and phasing of full-length HLA class I and II genes using SMRT Sequencing technology

The three classes of genes that comprise the MHC gene family are actively involved in determining donor-recipient compatibility for organ transplant, as well as susceptibility to autoimmune diseases via cross-reacting immunization. Specifically, Class I genes HLA-A, -B, -C, and class II genes HLA-DR, -DQ and -DP are considered medically important for genetic analysis to determine histocompatibility. They are highly polymorphic and have thousands of alleles implicated in disease resistance and susceptibility. The importance of full-length HLA gene sequencing for genotyping, detection of null alleles, and phasing is now widely acknowledged. While DNA-sequencing-based HLA genotyping has become routine, only 7% of the HLA genes have been characterized by allele-level sequencing, while 93% are still defined by partial sequences. The gold-standard Sanger sequencing technology is being quickly replaced by second-generation, high- throughput sequencing methods due to its inability to generate unambiguous phased reads from heterozygous alleles. However, although these short, high-throughput, clonal sequencing methods are better at heterozygous allele detection, they are inadequate at generating full-length haploid gene sequences. Thus, full-length gene sequencing from an enhancer-promoter region to a 3’UTR that includes phasing information without the need for imputation still remains a technological challenge. The best way to overcome these challenges is to sequence these genes with a technology that is clonal in nature and has the longest possible read lengths. We have employed Single Molecule Real-Time (SMRT) sequencing technology from Pacific Biosciences for sequencing full-length HLA class I and II genes.


June 1, 2021  |  

Highly sensitive, non-invasive detection of colorectal cancer mutations using single molecule, third generation sequencing.

Colorectal cancer (CRC) represents one of the most prevalent and lethal malignant neoplasms and every individual of age 50 and above should undergo regular CRC screening. Currently, the most effective procedure to detect adenomas, the precursors to CRC, is colonoscopy, which reduces CRC incidence by 80%. However, it is an invasive approach that is unpleasant for the patient, expensive, and poses some risk of complications such as colon perforation. A non-invasive screening approach with detection rates comparable to those of colonoscopy has not yet been established. The current study applies Pacific Biosciences third generation, single molecule sequencing to the inspection of CRC-driving mutations. Our approach combines the screening power and the extremely high accuracy of circular consensus (CCS) third generation sequencing with the non-invasiveness of using stool DNA to detect CRC-associated mutations present at extremely low frequencies and establishes a foundation for a non-invasive, highly sensitive assay to screen the population for CRC and early stage adenomas. We performed a series of experiments using a pool of fifteen amplicons covering the genes most frequently mutated in CRC (APC, Beta Catenin, KRAS, BRAF, and TP53), ensuring a theoretical screening coverage of over 97% for both CRC and adenomas. The assay was able to detect mutations in DNA isolated from stool samples from patients diagnosed with CRC at frequencies below 0.5 % with no false positives. The mutations were then confirmed by sequencing DNA isolated from the excised tumor samples. Our assay should be sensitive enough to allow the early identification of adenomatous polyps using stool DNA as analyte. In conclusion, we have developed an assay to detect mutations in the genes associated with CRC and adenomas using Pacific Biosciences RS Single Molecule, Real Time Circular Consensus Sequencing (SMRT-CCS). With no systematic bias and a much higher raw base-calling quality (CCS) compared to other sequencing methods, the assay was able to detect mutations in stool DNA at frequencies below 0.5 % with no false positives. This level of sensitivity should be sufficient to allow the detection of most adenomatous polyps using stool DNA as analyte, a feature that would make our approach the first non-invasive assay with a sensitivity comparable to that of colonoscopy and a strong candidate for the non-invasive preventive CRC screening of the general population.


June 1, 2021  |  

Unique haplotype structure determination in human genome using Single Molecule, Real-Time (SMRT) Sequencing of targeted full-length fosmids.

Determination of unique individual haplotypes is an essential first step toward understanding how identical genotypes having different phases lead to different biological interpretations of function, phenotype, and disease. Genome-wide methods for identifying individual genetic variation have been limited in their ability to acquire phased, extended, and complete genomic sequences that are long enough to assemble haplotypes with high confidence. We explore a recombineering approach for isolation and sequencing of a tiling of targeted fosmids to capture interesting regions from human genome. Each individual fosmid contains large genomic fragments (~35?kb) that are sequenced with long-read SMRT technology to generate contiguous long reads. These long reads can be easily de novo assembled for targeted haplotype resolution within an individual’s genomes. The P5-C3 chemistry for SMRT Sequencing generated contiguous, full-length fosmid sequences of 30 to 40 kb in a single read, allowing assembly of resolved haplotypes with minimal data processing. The phase preserved in fosmid clones spanned at least two heterozygous variant loci, providing the essential detail of precise haplotype structures. We show complete assembly of haplotypes for various targeted loci, including the complex haplotypes of the KIR locus (~150 to 200 kb) and conserved extended haplotypes (CEHs) of the MHC region. This method is easily applicable to other regions of the human genome, as well as other genomes.


June 1, 2021  |  

Complex alternative splicing patterns in hematopoietic cell subpopulations revealed by third-generation long reads.

Background: Alternative splicing expands the repertoire of gene functions and is a signature for different cell populations. Here we characterize the transcriptome of human bone marrow subpopulations including progenitor cells to understand their contribution to homeostasis and pathological conditions such as atherosclerosis and tumor metastasis. To obtain full-length transcript structures, we utilized long reads in addition to RNA-seq for estimating isoform diversity and abundance. Method: Freshly harvested, viable human bone marrow tissues were extracted from discarded harvesting equipment and separated into total bone marrow (total), lineage-negative (lin-) progenitor cells and differentiated cells (lin+) by magnetic bead sorting with antibodies to surface markers of hematopoietic cell lineages. Sequencing was done with SOLiD, Illumina HiSeq (100bp paired-end reads), and PacBio RS II (full-length cDNA library protocol for 1 – 6 kb libraries). Short reads were assembled using both Trinity for de novo assembly and Cufflinks for genome-guided assembly. Full-length transcript consensus sequences were obtained for the PacBio data using the RS_IsoSeq protocol from PacBios SMRTAnalysis software. Quantitation for each sample was done independently for each sequencing platform using Sailfish to obtain the TPM (transcripts per million) using k-mer matching. Results: PacBios long read sequencing technology is capable of sequencing full-length transcripts up to 10 kb and reveals heretofore-unseen isoform diversity and complexity within the hematopoietic cell populations. A comparison of sequencing depth and de novo transcript assembly with short read, second-generation sequencing reveals that, while short reads provide precision in determining portions of isoform structure and supporting larger 5 and 3 UTR regions, it fails in providing a complete structure especially when multiple isoforms are present at the same locus. Increased breadth of isoform complexity is revealed by long reads that permits further elaboration of full isoform diversity and specific isoform abundance within each separate cell population. Sorting the distribution of major and minor isoforms reveals a cell population-specific balance focused on distinct genome loci and shows how tissue specificity and diversity are modulated by alternative splicing.


June 1, 2021  |  

Resolving the ‘dark matter’ in genomes.

Second-generation sequencing has brought about tremendous insights into the genetic underpinnings of biology. However, there are many functionally important and medically relevant regions of genomes that are currently difficult or impossible to sequence, resulting in incomplete and fragmented views of genomes. Two main causes are (i) limitations to read DNA of extreme sequence content (GC-rich or AT-rich regions, low complexity sequence contexts) and (ii) insufficient read lengths which leave various forms of structural variation unresolved and result in mapping ambiguities.


June 1, 2021  |  

Access full spectrum of polymorphisms in HLA class I & II genes, without imputation for disease association and evolutionary research.

MHC class I and II genes are critically monitored by high-resolution sequencing for organ transplant decisions due to their role in GVHD. Their direct or linkage-based causal association, have increased their prominence as targets for drug sensitivity, autoimmune, cancer and infectious disease research. Monitoring HLA genes can however be tricky due to their highly polymorphic nature. Allele-level resolution is thus strongly preferred. However, most studies were historically focused on peptide binding domains of the HLA genes, due to technological challenges. As a result knowledge about the functional role of polymorphisms outside of exons 2 and 3 of HLA genes was rather limited. There are also relatively few full-length gene references currently available in the IMGT HLA database. This made it difficult to quickly adopt high-throughput reference-reliant methods for allele-level HLA sequencing. Increasing awareness regarding role of regulatory region polymorphisms of HLA genes in disease association1, nonetheless have brought about a revolution in full-length HLA gene sequencing. Researchers are now exploring ways to obtain complete information for HLA genes and integrate it with the current HLA database so it can be interpreted used by clinical researchers. We have explored advantages of SMRT Sequencing to obtain fully phased, allele-specific sequences of HLA class I and II genes for 96 samples using completely De novo consensus generation approach for imputation-free 4-field typing. With long read lengths (average >10 kb) and consensus accuracy exceeding 99.999% (Q50), a comprehensive snapshot of variants in exons, introns and UTRs could be obtained for spectrum of polymorphisms in phase across SNP-poor regions. Such information can provide invaluable insights in future causality association and population diversity research.


June 1, 2021  |  

Full-length cDNA sequencing of alternatively spliced isoforms provides insight into human cancer

The majority of human genes are alternatively spliced, making it possible for most genes to generate multiple proteins. The process of alternative splicing is highly regulated in a developmental-stage and tissue-specific manner. Perturbations in the regulation of these events can lead to disease in humans (1). Alternative splicing has been shown to play a role in human cancer, muscular dystrophy, Alzheimer’s, and many other diseases. Understanding these diseases requires knowing the full complement of mRNA isoforms. Microarrays and high-throughput cDNA sequencing have become highly successful tools for studying transcriptomes, however these technologies only provide small fragments of transcripts and building complete transcript isoforms has been very challenging (2). We have developed a technique, called Iso-Seq sequencing, that is capable of sequencing full-length, single-molecule cDNA sequences. The method employs SMRT Sequencing from PacBio, which can sequence individual molecules with read lengths that average more than 10 kb and can reach as long as 40 kb. As most transcripts are from 1 – 10 kb, we can sequence through entire RNA molecules, requiring no fragmentation or post-sequencing assembly. Jointly with the sequencing method, we developed a computational pipeline that polishes these full-length transcript sequences into high-quality, non-redundant transcript consensus sequences. Iso-Seq sequencing enables unambiguous identification of alternative splicing events, alternative transcriptional start and polyA sites, and transcripts from gene fusion events. Knowledge of the complete set of isoforms from a sample of interest is key for accurate quantification of isoform abundance when using any technology for transcriptome studies (3). Here we characterize the full-length transcriptome of paired tumor/normal samples from breast cancer using deep Iso-Seq sequencing. We highlight numerous discoveries of novel alternatively spliced isoforms, gene-fusion events, and previously unannotated genes that will improve our understanding of human cancer. (1) Faustino NA and Cooper TA. Genes and Development. 2003. 17: 419-437(2) Steijger T, et al. Nat Methods. 2013 Dec;10(12):1177-84.(3) Au KF, et al. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):E4821-30.


June 1, 2021  |  

Epigenome characterization of human genomes using the PacBio platform

In addition to the genome and transcriptome, epigenetic information is essential to understand biological processes and their regulation, and their misregulation underlying disease. Traditionally, epigenetic DNA modifications are detected using upfront sample preparation steps such as bisulfite conversion, followed by sequencing. Bisulfite sequencing has provided a wealth of knowledge about human epigenetics, however it does not access the entire genome due to limitations in read length and GC- bias of the sequencing technologies used. In contrast, Single Molecule, Real-Time (SMRT) DNA Sequencing is unique in that it can detect DNA base modifications as part of the sequencing process. It can thereby leverage the long read lengths and lack of GC bias for more comprehensive views of the human epigenome. I will highlight several examples of this capability towards the generation of new biological insights, including the resolution of methylation states in repetitive and GC-rich regions of the genome, and large-scale changes in the methylation status across a cancer genome as a function of drug sensitivity.


June 1, 2021  |  

Highly sensitive and cost-effective detection of BRCA1 and BRCA2 cancer variants in FFPE samples using Multiplicom’s MASTR technology & Single Molecule, Real-Time (SMRT) Sequencing

Specific mutations in BRCA1 and BRCA2 have been shown to be associated with several types of cancers. Molecular profiling of cancer samples requires assays capable of accurately detecting the entire spectrum of variants, including those at relatively low frequency. Next-Generation Sequencing (NGS) has been a powerful tool for researchers to better understand cancer genetics. Here we describe a targeted re-sequencing workflow that combines barcoded amplification of BRCA1 and BRCA2 exons from 12 FFPE tumor samples using Multiplicom’s MASTR technology with PacBio SMRT Sequencing. This combination allows for the accurate detection of variants in a cost-effective and timely manner.


June 1, 2021  |  

Genome in a Bottle: You’ve sequenced. How well did you do?

Purpose: Clinical laboratories, research laboratories and technology developers all need DNA samples with reliably known genotypes in order to help validate and improve their methods. The Genome in a Bottle Consortium (genomeinabottle.org) has been developing Reference Materials with high-accuracy whole genome sequences to support these efforts.Methodology: Our pilot reference material is based on Coriell sample NA12878 and was released in May 2015 as NIST RM 8398 (tinyurl.com/giabpilot). To minimize bias and improve accuracy, 11 whole-genome and 3 exome data sets produced using 5 different technologies were integrated using a systematic arbitration method [1]. The Genome in a Bottle Analysis Group is adapting these methods and developing new methods to characterize 2 families, one Asian and one Ashkenazi Jewish from the Personal Genome Project, which are consented for public release of sequencing and phenotype data. We have generated a larger and even more diverse data set on these samples, including high-depth Illumina paired-end and mate-pair, Complete Genomics, and Ion Torrent short-read data, as well as Moleculo, 10X, Oxford Nanopore, PacBio, and BioNano Genomics long-read data. We are analyzing these data to provide an accurate assessment of not just small variants but also large structural variants (SVs) in both “easy” regions of the genome and in some “hard” repetitive regions. We have also made all of the input data sources publicly available for download, analysis, and publication.Results: Our arbitration method produced a reference data set of 2,787,291 single nucleotide variants (SNVs), 365,135 indels, 2744 SVs, and 2.2 billion homozygous reference calls for our pilot genome. We found that our call set is highly sensitive and specific in comparison to independent reference data sets. We have also generated preliminary assemblies and structural variant calls for the next 2 trios from long read data and are currently integrating and validating these.Discussion: We combined the strengths of each of our input datasets to develop a comprehensive and accurate benchmark call set. In the short time it has been available, over 20 published or submitted papers have used our data. Many challenges exist in comparing to our benchmark calls, and thus we have worked with the Global Alliance for Genomics and Health to develop standardized methods, performance metrics, and software to assist in its use.[1] Zook et al, Nat Biotech. 2014.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.