Menu
September 22, 2019  |  

Next generation sequencing data of a defined microbial mock community.

Generating sequence data of a defined community composed of organisms with complete reference genomes is indispensable for the benchmarking of new genome sequence analysis methods, including assembly and binning tools. Moreover the validation of new sequencing library protocols and platforms to assess critical components such as sequencing errors and biases relies on such datasets. We here report the next generation metagenomic sequence data of a defined mock community (Mock Bacteria ARchaea Community; MBARC-26), composed of 23 bacterial and 3 archaeal strains with finished genomes. These strains span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat content and encompass a diverse abundance profile. Short read Illumina and long-read PacBio SMRT sequences of this mock community are described. These data represent a valuable resource for the scientific community, enabling extensive benchmarking and comparative evaluation of bioinformatics tools without the need to simulate data. As such, these data can aid in improving our current sequence data analysis toolkit and spur interest in the development of new tools.


September 22, 2019  |  

Melanization of mycorrhizal fungal necromass structures microbial decomposer communities

Mycorrhizal fungal necromass is increasingly recognized as an important contributor to soil organic carbon pools, particularly in forest ecosystems. While its decomposition rate is primarily determined by biochemical composition, how traits such as melanin content affect the structure of necromass decomposer communities remains poorly understood. To assess the role of biochemical traits on microbial decomposer community composition and functioning, we incubated melanized and non-melanized necromass of the mycorrhizal fungus Meliniomyces bicolor in Pinus- and Quercus-dominated forests in Minnesota, USA and then assessed the associated fungal and bacterial decomposer communities after 1, 2 and 3 months using high-throughput sequencing. Melanized necromass decomposed significantly slower than non-melanized necromass in both forests. The structure of the microbial decomposer communities depended significantly on necromass melanin content, although the effect was stronger for fungi than bacteria. On non-melanized necromass, fungal communities were dominated by r-selected ascomycete and mucoromycete microfungi early and then replaced by basidiomycete ectomycorrhizal fungi, while on melanized necromass these groups were co-dominant throughout the incubation. Bacterial communities were dominated by both specialist mycophageous and generalist taxa. Synthesis. Our results indicate that necromass biochemistry not only strongly affects rates of decomposition but also the structure of the associated decomposer communities. Furthermore, the observed colonization patterns suggest that fungi, and particularly ectomycorrhizal fungi, may play a more important role in necromass decomposition than previously recognized.


September 22, 2019  |  

Quantitative metaproteomics highlight the metabolic contributions of uncultured phylotypes in a thermophilic anaerobic digester.

In this study, we used multiple meta-omic approaches to characterize the microbial community and the active metabolic pathways of a stable industrial biogas reactor with food waste as the dominant feedstock, operating at thermophilic temperatures (60°C) and elevated levels of free ammonia (367 mg/liter NH3-N). The microbial community was strongly dominated (76% of all 16S rRNA amplicon sequences) by populations closely related to the proteolytic bacterium Coprothermobacter proteolyticus. Multiple Coprothermobacter-affiliated strains were detected, introducing an additional level of complexity seldom explored in biogas studies. Genome reconstructions provided metabolic insight into the microbes that performed biomass deconstruction and fermentation, including the deeply branching phyla Dictyoglomi and Planctomycetes and the candidate phylum “Atribacteria” These biomass degraders were complemented by a synergistic network of microorganisms that convert key fermentation intermediates (fatty acids) via syntrophic interactions with hydrogenotrophic methanogens to ultimately produce methane. Interpretation of the proteomics data also suggested activity of a Methanosaeta phylotype acclimatized to high ammonia levels. In particular, we report multiple novel phylotypes proposed as syntrophic acetate oxidizers, which also exert expression of enzymes needed for both the Wood-Ljungdahl pathway and ß-oxidation of fatty acids to acetyl coenzyme A. Such an arrangement differs from known syntrophic oxidizing bacteria and presents an interesting hypothesis for future studies. Collectively, these findings provide increased insight into active metabolic roles of uncultured phylotypes and presents new synergistic relationships, both of which may contribute to the stability of the biogas reactor.Biogas production through anaerobic digestion of organic waste provides an attractive source of renewable energy and a sustainable waste management strategy. A comprehensive understanding of the microbial community that drives anaerobic digesters is essential to ensure stable and efficient energy production. Here, we characterize the intricate microbial networks and metabolic pathways in a thermophilic biogas reactor. We discuss the impact of frequently encountered microbial populations as well as the metabolism of newly discovered novel phylotypes that seem to play distinct roles within key microbial stages of anaerobic digestion in this stable high-temperature system. In particular, we draft a metabolic scenario whereby multiple uncultured syntrophic acetate-oxidizing bacteria are capable of syntrophically oxidizing acetate as well as longer-chain fatty acids (via the ß-oxidation and Wood-Ljundahl pathways) to hydrogen and carbon dioxide, which methanogens subsequently convert to methane. Copyright © 2016 American Society for Microbiology.


September 22, 2019  |  

Caught in the middle with multiple displacement amplification: the myth of pooling for avoiding multiple displacement amplification bias in a metagenome.

Shotgun metagenomics has become an important tool for investigating the ecology of microorganisms. Underlying these investigations is the assumption that metagenome sequence data accurately estimates the census of microbial populations. Multiple displacement amplification (MDA) of microbial community DNA is often used in cases where it is difficult to obtain enough DNA for sequencing; however, MDA can result in amplification biases that may impact subsequent estimates of population census from metagenome data. Some have posited that pooling replicate MDA reactions negates these biases and restores the accuracy of population analyses. This assumption has not been empirically tested.Using mock viral communities, we examined the influence of pooling on population-scale analyses. In pooled and single reaction MDA treatments, sequence coverage of viral populations was highly variable and coverage patterns across viral genomes were nearly identical, indicating that initial priming biases were reproducible and that pooling did not alleviate biases. In contrast, control unamplified sequence libraries showed relatively even coverage across phage genomes.MDA should be avoided for metagenomic investigations that require quantitative estimates of microbial taxa and gene functional groups. While MDA is an indispensable technique in applications such as single-cell genomics, amplification biases cannot be overcome by combining replicate MDA reactions. Alternative library preparation techniques should be utilized for quantitative microbial ecology studies utilizing metagenomic sequencing approaches.


September 22, 2019  |  

PCR and omics based techniques to study the diversity, ecology and biology of anaerobic fungi: Insights, challenges andopportunities.

Anaerobic fungi (phylum Neocallimastigomycota) are common inhabitants of the digestive tract of mammalian herbivores, and in the rumen, can account for up to 20% of the microbial biomass. Anaerobic fungi play a primary role in the degradation of lignocellulosic plant material. They also have a syntrophic interaction with methanogenic archaea, which increases their fiber degradation activity. To date, nine anaerobic fungal genera have been described, with further novel taxonomic groupings known to exist based on culture-independent molecular surveys. However, the true extent of their diversity may be even more extensively underestimated as anaerobic fungi continue being discovered in yet unexplored gut and non-gut environments. Additionally many studies are now known to have used primers that provide incomplete coverage of the Neocallimastigomycota. For ecological studies the internal transcribed spacer 1 region (ITS1) has been the taxonomic marker of choice, but due to various limitations the large subunit rRNA (LSU) is now being increasingly used. How the continued expansion of our knowledge regarding anaerobic fungal diversity will impact on our understanding of their biology and ecological role remains unclear; particularly as it is becoming apparent that anaerobic fungi display niche differentiation. As a consequence, there is a need to move beyond the broad generalization of anaerobic fungi as fiber-degraders, and explore the fundamental differences that underpin their ability to exist in distinct ecological niches. Application of genomics, transcriptomics, proteomics and metabolomics to their study in pure/mixed cultures and environmental samples will be invaluable in this process. To date the genomes and transcriptomes of several characterized anaerobic fungal isolates have been successfully generated. In contrast, the application of proteomics and metabolomics to anaerobic fungal analysis is still in its infancy. A central problem for all analyses, however, is the limited functional annotation of anaerobic fungal sequence data. There is therefore an urgent need to expand information held within publicly available reference databases. Once this challenge is overcome, along with improved sample collection and extraction, the application of these techniques will be key in furthering our understanding of the ecological role and impact of anaerobic fungi in the wide range of environments they inhabit.


September 22, 2019  |  

High-resolution characterization of the human microbiome.

The human microbiome plays an important and increasingly recognized role in human health. Studies of the microbiome typically use targeted sequencing of the 16S rRNA gene, whole metagenome shotgun sequencing, or other meta-omic technologies to characterize the microbiome’s composition, activity, and dynamics. Processing, analyzing, and interpreting these data involve numerous computational tools that aim to filter, cluster, annotate, and quantify the obtained data and ultimately provide an accurate and interpretable profile of the microbiome’s taxonomy, functional capacity, and behavior. These tools, however, are often limited in resolution and accuracy and may fail to capture many biologically and clinically relevant microbiome features, such as strain-level variation or nuanced functional response to perturbation. Over the past few years, extensive efforts have been invested toward addressing these challenges and developing novel computational methods for accurate and high-resolution characterization of microbiome data. These methods aim to quantify strain-level composition and variation, detect and characterize rare microbiome species, link specific genes to individual taxa, and more accurately characterize the functional capacity and dynamics of the microbiome. These methods and the ability to produce detailed and precise microbiome information are clearly essential for informing microbiome-based personalized therapies. In this review, we survey these methods, highlighting the challenges each method sets out to address and briefly describing methodological approaches. Copyright © 2016 Elsevier Inc. All rights reserved.


September 22, 2019  |  

A quantitative SMRT cell sequencing method for ribosomal amplicons.

Advances in sequencing technologies continue to provide unprecedented opportunities to characterize microbial communities. For example, the Pacific Biosciences Single Molecule Real-Time (SMRT) platform has emerged as a unique approach harnessing DNA polymerase activity to sequence template molecules, enabling long reads at low costs. With the aim to simultaneously classify and enumerate in situ microbial populations, we developed a quantitative SMRT (qSMRT) approach that involves the addition of exogenous standards to quantify ribosomal amplicons derived from environmental samples. The V7-9 regions of 18S SSU rDNA were targeted and quantified from protistan community samples collected in the Ross Sea during the Austral summer of 2011. We used three standards of different length and optimized conditions to obtain accurate quantitative retrieval across the range of expected amplicon sizes, a necessary criterion for analyzing taxonomically diverse 18S rDNA molecules from natural environments. The ability to concurrently identify and quantify microorganisms in their natural environment makes qSMRT a powerful, rapid and cost-effective approach for defining ecosystem diversity and function. Copyright © 2017 Elsevier B.V. All rights reserved.


September 22, 2019  |  

Metagenomic approaches to assess bacteriophages in various environmental niches.

Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral ‘dark matter’ of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this field of research.


September 22, 2019  |  

Electrosynthesis of commodity chemicals by an autotrophic microbial community.

A microbial community originating from brewery waste produced methane, acetate, and hydrogen when selected on a granular graphite cathode poised at -590 mV versus the standard hydrogen electrode (SHE) with CO(2) as the only carbon source. This is the first report on the simultaneous electrosynthesis of these commodity chemicals and the first description of electroacetogenesis by a microbial community. Deep sequencing of the active community 16S rRNA revealed a dynamic microbial community composed of an invariant Archaea population of Methanobacterium spp. and a shifting Bacteria population. Acetobacterium spp. were the most abundant Bacteria on the cathode when acetogenesis dominated. Methane was generally the dominant product with rates increasing from <1 to 7 mM day(-1) (per cathode liquid volume) and was concomitantly produced with acetate and hydrogen. Acetogenesis increased to >4 mM day(-1) (accumulated to 28.5 mM over 12 days), and methanogenesis ceased following the addition of 2-bromoethanesulfonic acid. Traces of hydrogen accumulated during initial selection and subsequently accelerated to >11 mM day(-1) (versus 0.045 mM day(-1) abiotic production). The hypothesis of electrosynthetic biocatalysis occurring at the microbe-electrode interface was supported by a catalytic wave (midpoint potential of -460 mV versus SHE) in cyclic voltammetry scans of the biocathode, the lack of redox active components in the medium, and the generation of comparatively high amounts of products (even after medium exchange). In addition, the volumetric production rates of these three commodity chemicals are marked improvements for electrosynthesis, advancing the process toward economic feasibility.


September 22, 2019  |  

Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.


September 22, 2019  |  

High-resolution phylogenetic microbial community profiling.

Over the past decade, high-throughput short-read 16S rRNA gene amplicon sequencing has eclipsed clone-dependent long-read Sanger sequencing for microbial community profiling. The transition to new technologies has provided more quantitative information at the expense of taxonomic resolution with implications for inferring metabolic traits in various ecosystems. We applied single-molecule real-time sequencing for microbial community profiling, generating full-length 16S rRNA gene sequences at high throughput, which we propose to name PhyloTags. We benchmarked and validated this approach using a defined microbial community. When further applied to samples from the water column of meromictic Sakinaw Lake, we show that while community structures at the phylum level are comparable between PhyloTags and Illumina V4 16S rRNA gene sequences (iTags), variance increases with community complexity at greater water depths. PhyloTags moreover allowed less ambiguous classification. Last, a platform-independent comparison of PhyloTags and in silico generated partial 16S rRNA gene sequences demonstrated significant differences in community structure and phylogenetic resolution across multiple taxonomic levels, including a severe underestimation in the abundance of specific microbial genera involved in nitrogen and methane cycling across the Lake’s water column. Thus, PhyloTags provide a reliable adjunct or alternative to cost-effective iTags, enabling more accurate phylogenetic resolution of microbial communities and predictions on their metabolic potential.


September 22, 2019  |  

Comparative genomic analysis of Sulfurospirillum cavolei MES reconstructed from the metagenome of an electrosynthetic microbiome.

Sulfurospirillum spp. play an important role in sulfur and nitrogen cycling, and contain metabolic versatility that enables reduction of a wide range of electron acceptors, including thiosulfate, tetrathionate, polysulfide, nitrate, and nitrite. Here we describe the assembly of a Sulfurospirillum genome obtained from the metagenome of an electrosynthetic microbiome. The ubiquity and persistence of this organism in microbial electrosynthesis systems suggest it plays an important role in reactor stability and performance. Understanding why this organism is present and elucidating its genetic repertoire provide a genomic and ecological foundation for future studies where Sulfurospirillum are found, especially in electrode-associated communities. Metabolic comparisons and in-depth analysis of unique genes revealed potential ecological niche-specific capabilities within the Sulfurospirillum genus. The functional similarities common to all genomes, i.e., core genome, and unique gene clusters found only in a single genome were identified. Based upon 16S rRNA gene phylogenetic analysis and average nucleotide identity, the Sulfurospirillum draft genome was found to be most closely related to Sulfurospirillum cavolei. Characterization of the draft genome described herein provides pathway-specific details of the metabolic significance of the newly described Sulfurospirillum cavolei MES and, importantly, yields insight to the ecology of the genus as a whole. Comparison of eleven sequenced Sulfurospirillum genomes revealed a total of 6246 gene clusters in the pan-genome. Of the total gene clusters, 18.5% were shared among all eleven genomes and 50% were unique to a single genome. While most Sulfurospirillum spp. reduce nitrate to ammonium, five of the eleven Sulfurospirillum strains encode for a nitrous oxide reductase (nos) cluster with an atypical nitrous-oxide reductase, suggesting a utility for this genus in reduction of the nitrous oxide, and as a potential sink for this potent greenhouse gas.


September 22, 2019  |  

Root endophytes and invasiveness: no difference between native and non-native Phragmites in the Great Lakes Region

Microbial interactions could play an important role in plant invasions. If invasive plants associate with relatively more mutualists or fewer pathogens than their native counterparts, then microbial communities could foster plant invasiveness. Studies examining the effects of microbes on invasive plants commonly focus on a single microbial group (e.g., bacteria) or measure only plant response to microbes, not documenting the specific taxa associating with invaders. We surveyed root microbial communities associated with co-occurring native and non-native lineages of Phragmites australis, across Michigan, USA. Our aim was to determine whether (1) plant lineage was a stronger predictor of root microbial community composition than environmental variables and (2) the non-native lineage associated with more mutualistic and/or fewer pathogenic microbes than the native lineage. We used microscopy and culture-independent molecular methods to examine fungal colonization rate and community composition in three major microbial groups (bacteria, fungi, and oomycetes) within roots. We also used microbial functional databases to assess putative functions of the observed microbial taxa. While fungal colonization of roots was significantly higher in non-native Phragmites than the native lineage, we found no differences in root microbial community composition or potential function between the two Phragmites lineages. Community composition did differ significantly by site, with soil saturation playing a significant role in structuring communities in all three microbial groups. The relative abundance of some specific bacterial taxa did differ between Phragmites lineages at the phylum and genus level (e.g., Proteobacteria, Firmicutes). Purported function of root fungi and respiratory mode of root bacteria also did not differ between native and non-native Phragmites. We found no evidence that native and non-native Phragmites harbored distinct root microbial communities; nor did those communities differ functionally. Therefore, if the trends revealed at our sites are widespread, it is unlikely that total root microbial communities are driving invasion by non-native Phragmites plants.


September 22, 2019  |  

Recent insights into the tick microbiome gained through next-generation sequencing.

The tick microbiome comprises communities of microorganisms, including viruses, bacteria and eukaryotes, and is being elucidated through modern molecular techniques. The advent of next-generation sequencing (NGS) technologies has enabled the genes and genomes within these microbial communities to be explored in a rapid and cost-effective manner. The advantages of using NGS to investigate microbiomes surpass the traditional non-molecular methods that are limited in their sensitivity, and conventional molecular approaches that are limited in their scalability. In recent years the number of studies using NGS to investigate the microbial diversity and composition of ticks has expanded. Here, we provide a review of NGS strategies for tick microbiome studies and discuss the recent findings from tick NGS investigations, including the bacterial diversity and composition, influential factors, and implications of the tick microbiome.


September 22, 2019  |  

Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers.

Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplification primer selection, and read length, which can affect the apparent microbial community. In this study, we compared short read 16S rRNA variable regions, V1-V3, with that of near-full length 16S regions, V1-V8, using highly diverse steer rumen microbial communities, in order to examine the impact of technology selection on phylogenetic profiles. Short paired-end reads from the Illumina MiSeq platform were used to generate V1-V3 sequence, while long “circular consensus” reads from the Pacific Biosciences RSII instrument were used to generate V1-V8 data. The two platforms revealed similar microbial operational taxonomic units (OTUs), as well as similar species richness, Good’s coverage, and Shannon diversity metrics. However, the V1-V8 amplified ruminal community resulted in significant increases in several orders of taxa, such as phyla Proteobacteria and Verrucomicrobia (P < 0.05). Taxonomic classification accuracy was also greater in the near full-length read. UniFrac distance matrices using jackknifed UPGMA clustering also noted differences between the communities. These data support the consensus that longer reads result in a finer phylogenetic resolution that may not be achieved by shorter 16S rRNA gene fragments. Our work on the cattle rumen bacterial community demonstrates that utilizing near full-length 16S reads may be useful in conducting a more thorough study, or for developing a niche-specific database to use in analyzing data from shorter read technologies when budgetary constraints preclude use of near-full length 16S sequencing. Copyright © 2016 Elsevier B.V. All rights reserved.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.