X

Quality Statement

Pacific Biosciences is committed to providing high-quality products that meet customer expectations and comply with regulations. We will achieve these goals by adhering to and maintaining an effective quality-management system designed to ensure product quality, performance, and safety.

X

Image Use Agreement

By downloading, copying, or making any use of the images located on this website (“Site”) you acknowledge that you have read and understand, and agree to, the terms of this Image Usage Agreement, as well as the terms provided on the Legal Notices webpage, which together govern your use of the images as provided below. If you do not agree to such terms, do not download, copy or use the images in any way, unless you have written permission signed by an authorized Pacific Biosciences representative.

Subject to the terms of this Agreement and the terms provided on the Legal Notices webpage (to the extent they do not conflict with the terms of this Agreement), you may use the images on the Site solely for (a) editorial use by press and/or industry analysts, (b) in connection with a normal, peer-reviewed, scientific publication, book or presentation, or the like. You may not alter or modify any image, in whole or in part, for any reason. You may not use any image in a manner that misrepresents the associated Pacific Biosciences product, service or technology or any associated characteristics, data, or properties thereof. You also may not use any image in a manner that denotes some representation or warranty (express, implied or statutory) from Pacific Biosciences of the product, service or technology. The rights granted by this Agreement are personal to you and are not transferable by you to another party.

You, and not Pacific Biosciences, are responsible for your use of the images. You acknowledge and agree that any misuse of the images or breach of this Agreement will cause Pacific Biosciences irreparable harm. Pacific Biosciences is either an owner or licensee of the image, and not an agent for the owner. You agree to give Pacific Biosciences a credit line as follows: "Courtesy of Pacific Biosciences of California, Inc., Menlo Park, CA, USA" and also include any other credits or acknowledgments noted by Pacific Biosciences. You must include any copyright notice originally included with the images on all copies.

IMAGES ARE PROVIDED BY Pacific Biosciences ON AN "AS-IS" BASIS. Pacific Biosciences DISCLAIMS ALL REPRESENTATIONS AND WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, NON-INFRINGEMENT, OWNERSHIP, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL Pacific Biosciences BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES OF ANY KIND WHATSOEVER WITH RESPECT TO THE IMAGES.

You agree that Pacific Biosciences may terminate your access to and use of the images located on the PacificBiosciences.com website at any time and without prior notice, if it considers you to have violated any of the terms of this Image Use Agreement. You agree to indemnify, defend and hold harmless Pacific Biosciences, its officers, directors, employees, agents, licensors, suppliers and any third party information providers to the Site from and against all losses, expenses, damages and costs, including reasonable attorneys' fees, resulting from any violation by you of the terms of this Image Use Agreement or Pacific Biosciences' termination of your access to or use of the Site. Termination will not affect Pacific Biosciences' rights or your obligations which accrued before the termination.

I have read and understand, and agree to, the Image Usage Agreement.

I disagree and would like to return to the Pacific Biosciences home page.

Pacific Biosciences
Contact:
Tuesday, April 21, 2020

Dual Role of gnaA in Antibiotic Resistance and Virulence in Acinetobacter baumannii.

Acinetobacter baumannii is an important Gram-negative pathogen in hospital-related infections. However, treatment options for A. baumannii infections have become limited due to multidrug resistance. Bacterial virulence is often associated with capsule genes found in the K locus, many of which are essential for biosynthesis of the bacterial envelope. However, the roles of other genes in the K locus remain largely unknown. From an in vitro evolution experiment, we obtained an isolate of the virulent and multidrug-resistant A. baumannii strain MDR-ZJ06, called MDR-ZJ06M, which has an insertion by the ISAba16 transposon in gnaA (encoding UDP-N-acetylglucosamine C-6 dehydrogenase), a gene found in…

Read More »

Tuesday, April 21, 2020

Genome mining identifies cepacin as a plant-protective metabolite of the biopesticidal bacterium Burkholderia ambifaria.

Beneficial microorganisms are widely used in agriculture for control of plant pathogens, but a lack of efficacy and safety information has limited the exploitation of multiple promising biopesticides. We applied phylogeny-led genome mining, metabolite analyses and biological control assays to define the efficacy of Burkholderia ambifaria, a naturally beneficial bacterium with proven biocontrol properties but potential pathogenic risk. A panel of 64 B.?ambifaria strains demonstrated significant antimicrobial activity against priority plant pathogens. Genome sequencing, specialized metabolite biosynthetic gene cluster mining and metabolite analysis revealed an armoury of known and unknown pathways within B.?ambifaria. The biosynthetic gene cluster responsible for the…

Read More »

Tuesday, April 21, 2020

Symbiotic organs shaped by distinct modes of genome evolution in cephalopods.

Microbes have been critical drivers of evolutionary innovation in animals. To understand the processes that influence the origin of specialized symbiotic organs, we report the sequencing and analysis of the genome of Euprymna scolopes, a model cephalopod with richly characterized host-microbe interactions. We identified large-scale genomic reorganization shared between E. scolopes and Octopus bimaculoides and posit that this reorganization has contributed to the evolution of cephalopod complexity. To reveal genomic signatures of host-symbiont interactions, we focused on two specialized organs of E. scolopes: the light organ, which harbors a monoculture of Vibrio fischeri, and the accessory nidamental gland (ANG), a…

Read More »

Tuesday, April 21, 2020

Comparative Genomics of Marine Sponge-Derived Streptomyces spp. Isolates SM17 and SM18 With Their Closest Terrestrial Relatives Provides Novel Insights Into Environmental Niche Adaptations and Secondary Metabolite Biosynthesis Potential.

The emergence of antibiotic resistant microorganisms has led to an increased need for the discovery and development of novel antimicrobial compounds. Frequent rediscovery of the same natural products (NPs) continues to decrease the likelihood of the discovery of new compounds from soil bacteria. Thus, efforts have shifted toward investigating microorganisms and their secondary metabolite biosynthesis potential, from diverse niche environments, such as those isolated from marine sponges. Here we investigated at the genomic level two Streptomyces spp. strains, namely SM17 and SM18, isolated from the marine sponge Haliclona simulans, with previously reported antimicrobial activity against clinically relevant pathogens; using single…

Read More »

Tuesday, April 21, 2020

Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723.

Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis.Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined.We describe the NRPS-t1PKS cluster…

Read More »

Subscribe for blog updates:

Archives

Press Release

Pacific Biosciences Announces New Chief Financial Officer

Monday, September 14, 2020

Stay
Current

Visit our blog »