October 23, 2019  |  

Dynamics of coral-associated microbiomes during a thermal bleaching event.

Coral-associated microorganisms play an important role in their host fitness and survival. A number of studies have demonstrated connections between thermal tolerance in corals and the type/relative abundance of Symbiodinium they harbor. More recently, the shifts in coral-associated bacterial profiles were also shown to be linked to the patterns of coral heat tolerance. Here, we investigated the dynamics of Porites lutea-associated bacterial and algal communities throughout a natural bleaching event, using full-length 16S rRNA and internal transcribed spacer sequences (ITS) obtained from PacBio circular consensus sequencing. We provided evidence of significant changes in the structure and diversity of coral-associated microbiomes during thermal stress. The balance of the symbiosis shifted from a predominant association between corals and Gammaproteobacteria to a predominance of Alphaproteobacteria and to a lesser extent Betaproteobacteria following the bleaching event. On the contrary, the composition and diversity of Symbiodinium communities remained unaltered throughout the bleaching event. It appears that the switching and/or shuffling of Symbiodinium types may not be the primary mechanism used by P. lutea to cope with increasing seawater temperature. The shifts in the structure and diversity of associated bacterial communities may contribute more to the survival of the coral holobiont under heat stress.© 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.


September 22, 2019  |  

Interpreting microbial biosynthesis in the genomic age: Biological and practical considerations.

Genome mining has become an increasingly powerful, scalable, and economically accessible tool for the study of natural product biosynthesis and drug discovery. However, there remain important biological and practical problems that can complicate or obscure biosynthetic analysis in genomic and metagenomic sequencing projects. Here, we focus on limitations of available technology as well as computational and experimental strategies to overcome them. We review the unique challenges and approaches in the study of symbiotic and uncultured systems, as well as those associated with biosynthetic gene cluster (BGC) assembly and product prediction. Finally, to explore sequencing parameters that affect the recovery and contiguity of large and repetitive BGCs assembled de novo, we simulate Illumina and PacBio sequencing of the Salinispora tropica genome focusing on assembly of the salinilactam (slm) BGC.


September 22, 2019  |  

Full-length transcriptome sequences and the identification of putative genes for flavonoid biosynthesis in safflower.

The flower of the safflower (Carthamus tinctorius L.) has been widely used in traditional Chinese medicine for the ability to improve cerebral blood flow. Flavonoids are the primary bioactive components in safflower, and their biosynthesis has attracted widespread interest. Previous studies mostly used second-generation sequencing platforms to survey the putative flavonoid biosynthesis genes. For a better understanding of transcription data and the putative genes involved in flavonoid biosynthesis in safflower, we carry our study.High-quality RNA was extracted from six types of safflower tissue. The RNAs of different tissues were mixed equally and used for multiple size-fractionated libraries (1-2, 2-3 and 3-6 k) library construction. Five cells were carried (2 cells for 1-2 and for 2-3 k libraries and 1 cell for 3-6 k libraries). 10.43Gb clean data and 38,302 de-redundant sequences were captured. 44 unique isoforms were annotated as encoding enzymes involved in flavonoid biosynthesis. The full length flavonoid genes were characterized and their evolutional relationship and expressional pattern were analyzed. They can be divided into eight families, with a large differences in the tissue expression. The temporal expressions under MeJA treatment were also measured, 9 genes are significantly up-regulated and 2 genes are significantly down-regulated. The genes involved in flavonoid synthesis in safflower were predicted in our study. Besides, the SSR and lncRNA are also analyzed in our study.Full-length transcriptome sequences were used in our study. The genes involved in flavonoid synthesis in safflower were predicted in our study. Combined the determination of flavonoids, CtC4H2, CtCHS3, CtCHI3, CtF3H3, CtF3H1 are mainly participated in MeJA promoting the synthesis of flavonoids. Our results also provide a valuable resource for further study on safflower.


September 22, 2019  |  

Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration.

Studies on antibiotic production wastewater have shown that even a single antibiotic can select for multidrug resistant bacteria in aquatic environments. It is speculated that plasmids are an important mechanism of multidrug resistance (MDR) under high concentrations of antibiotics. Herein, two metagenomic libraries were constructed with plasmid DNA extracted from cultivable microbial communities in a biological wastewater treatment reactor supplemented with 0 (CONTROL) or 25 mg/L of oxytetracycline (OTC-25). The OTC-25 plasmidome reads were assigned to 72 antibiotic resistance genes (ARGs) conferring resistance to 13 types of antibiotics. Dominant ARGs, encoding resistance to tetracycline, aminoglycoside, sulfonamide, and multidrug resistance genes, were enriched in the plasmidome under 25 mg/L of oxytetracycline. Furthermore, 17 contiguous multiple-ARG carrying contigs (carrying =?2 ARGs) were discovered in the OTC-25 plasmidome, whereas only nine were found in the CONTROL. Mapping of the OTC-25 plasmidome reads to completely sequenced plasmids revealed that the conjugative IncU resistance plasmid pFBAOT6 of Aeromonas caviae, carrying multidrug resistance transporter (pecM), tetracycline resistance genes (tetA, tetR), and transposase genes, might be a potential prevalent resistant plasmid in the OTC-25 plasmidome. Additionally, two novel resistant plasmids (containing contig C301682 carrying multidrug resistant operon mexCD-oprJ and contig C301632 carrying the tet36 and transposases genes) might also be potential prevalent resistant plasmids in the OTC-25 plasmidome. This study will be helpful to better understand the role of plasmids in the development of MDR in water environments under high antibiotic concentrations.


September 22, 2019  |  

Identification of the biosynthetic pathway for the antibiotic bicyclomycin.

Diketopiperazines (DKPs) make up a large group of natural products with diverse structures and biological activities. Bicyclomycin is a broad-spectrum DKP antibiotic with unique structure and function: it contains a highly oxidized bicyclic [4.2.2] ring and is the only known selective inhibitor of the bacterial transcription termination factor, Rho. Here, we identify the biosynthetic gene cluster for bicyclomycin containing six iron-dependent oxidases. We demonstrate that the DKP core is made by a tRNA-dependent cyclodipeptide synthase, and hydroxylations on two unactivated sp(3) carbons are performed by two mononuclear iron, a-ketoglutarate-dependent hydroxylases. Using bioinformatics, we also identify a homologous gene cluster prevalent in a human pathogen Pseudomonas aeruginosa. We detect bicyclomycin by overexpressing this gene cluster and establish P. aeruginosa as a new producer of bicyclomycin. Our work uncovers the biosynthetic pathway for bicyclomycin and sheds light on the intriguing oxidation chemistry that converts a simple DKP into a powerful antibiotic.


September 22, 2019  |  

Functional metagenomics reveals a novel carbapenem-hydrolyzing mobile beta-lactamase from Indian river sediments contaminated with antibiotic production waste.

Evolution has provided environmental bacteria with a plethora of genes that give resistance to antibiotic compounds. Under anthropogenic selection pressures, some of these genes are believed to be recruited over time into pathogens by horizontal gene transfer. River sediment polluted with fluoroquinolones and other drugs discharged from bulk drug production in India constitute an environment with unprecedented, long-term antibiotic selection pressures. It is therefore plausible that previously unknown resistance genes have evolved and/or are promoted here. In order to search for novel resistance genes, we therefore analyzed such river sediments by a functional metagenomics approach. DNA fragments providing resistance to different antibiotics in E. coli were sequenced using Sanger and PacBio RSII platforms. We recaptured the majority of known antibiotic resistance genes previously identified by open shot-gun metagenomics sequencing of the same samples. In addition, seven novel resistance gene candidates (six beta-lactamases and one amikacin resistance gene) were identified. Two class A beta-lactamases, blaRSA1 and blaRSA2, were phylogenetically close to clinically important ESBLs like blaGES, blaBEL and blaL2, and were further characterized for their substrate spectra. The blaRSA1 protein, encoded as an integron gene cassette, efficiently hydrolysed penicillins, first generation cephalosporins and cefotaxime, while blaRSA2 was an inducible class A beta-lactamase, capable of hydrolyzing carbapenems albeit with limited efficiency, similar to the L2 beta-lactamase from Stenotrophomonas maltophilia. All detected novel genes were associated with plasmid mobilization proteins, integrons, and/or other resistance genes, suggesting a potential for mobility. This study provides insight into a resistome shaped by an exceptionally strong and long-term antibiotic selection pressure. An improved knowledge of mobilized resistance factors in the external environment may make us better prepared for the resistance challenges that we may face in clinics in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Pseudomonas orientalis F9: A potent antagonist against phytopathogens with phytotoxic effect in the apple flower.

In light of public concerns over the use of pesticides and antibiotics in plant protection and the subsequent selection for spread of resistant bacteria in the environment, it is inevitable to broaden our knowledge about viable alternatives, such as natural antagonists and their mode of action. The genus Pseudomonas is known for its metabolic versatility and genetic plasticity, encompassing pathogens as well as antagonists. We characterized strain Pseudomonas orientalis F9, an isolate from apple flowers in a Swiss orchard, and determined its antagonistic activity against several phytopathogenic bacteria, in particular Erwinia amylovora, the causal agent of fire blight. P. orientalis F9 displayed antagonistic activity against a broad suite of phytopathogenic bacteria in the in vitro tests. The promising results from this analysis led to an ex vivo assay with E. amylovora CFBP1430Rif and P. orientalis F9 infected detached apple flowers. F9 diminished the fire blight pathogen in the flowers but also revealed phytotoxic traits. The experimental results were discussed in light of the complete genome sequence of F9, which revealed the strain to carry phenazine genes. Phenazines are known to contribute to antagonistic activity of bacterial strains against soil pathogens. When tested in the cress assay with Pythium ultimum as pathogen, F9 showed results comparable to the known antagonist P. protegens CHA0.


September 22, 2019  |  

Identification of the streptothricin and tunicamycin biosynthetic gene clusters by genome mining in Streptomyces sp. strain fd1-xmd.

The genus Streptomyces have been highly regarded for their important source of natural products. Combined with the technology of genome sequencing and mining, we could identify the active ingredients from fermentation broth quickly. Here, we report on Streptomyces sp. strain fd1-xmd, which was isolated from a soil sample collected in Shanghai. Interestingly, the fermentation broth derived from this strain demonstrated broad-spectrum antimicrobial activity against gram-positive bacteria, gram-negative bacteria, and eukaryotes. To identify the antimicrobial substances and their biosynthetic gene clusters, we sequenced the fd1-xmd strain and obtained a genome 7,929,999 bp in length. The average GC content of the chromosome was 72.5 mol%. Knockout experiments demonstrated that out of eight biosynthetic gene clusters we could identify, two are responsible for the biosynthesis of the antibiotics streptothricin (ST) and tunicamycin (TM). The ST biosynthetic gene cluster from fd1-xmd was verified via successful heterologous expression in Streptomyces coelicolor M1146. ST production had a yield of up to 0.5 g/L after the optimization of culture conditions. This study describes a novel producer of ST and TM and outlines the complete process undertaken for Streptomyces sp. strain fd1-xmd genome mining.


September 22, 2019  |  

Heterologous expression guides identification of the biosynthetic gene cluster of chuangxinmycin, an indole alkaloid antibiotic.

The indole alkaloid antibiotic chuangxinmycin, from Actinobacteria Actinoplanes tsinanensis, containing a unique thiopyrano[4,3,2- cd]indole scaffold, is a potent and selective inhibitor of bacterial tryptophanyl-tRNA synthetase. The chuangxinmycin biosynthetic gene cluster was identified by in silico analysis of the genome sequence, then verified by heterologous expression. Systemic gene inactivation and intermediate identification determined the minimum set of genes for unique thiopyrano[4,3,2- cd]indole formation and the concerted action of a radical S-adenosylmethionine protein plus an unknown protein for addition of the 3-methyl group. These findings set a solid foundation for comprehensively investigating the biosynthesis, optimizing yield, and generating new analogues of chuangxinmycin.


September 22, 2019  |  

PhdA catalyzes the first step of phenazine-1-carboxylic acid degradation in Mycobacterium fortuitum.

Phenazines are a class of bacterially produced redox-active metabolites that are found in natural, industrial, and clinical environments. In Pseudomonas spp., phenazine-1-carboxylic acid (PCA)-the precursor of all phenazine metabolites-facilitates nutrient acquisition, biofilm formation, and competition with other organisms. While the removal of phenazines negatively impacts these activities, little is known about the genes or enzymes responsible for phenazine degradation by other organisms. Here, we report that the first step of PCA degradation by Mycobacterium fortuitum is catalyzed by a phenazine-degrading decarboxylase (PhdA). PhdA is related to members of the UbiD protein family that rely on a prenylated flavin mononucleotide cofactor for activity. The gene for PhdB, the enzyme responsible for cofactor synthesis, is present in a putative operon with the gene encoding PhdA in a region of the M. fortuitum genome that is essential for PCA degradation. PhdA and PhdB are present in all known PCA-degrading organisms from the ActinobacteriaM. fortuitum can also catabolize other Pseudomonas-derived phenazines such as phenazine-1-carboxamide, 1-hydroxyphenazine, and pyocyanin. On the basis of our previous work and the current characterization of PhdA, we propose that degradation converges on a common intermediate: dihydroxyphenazine. An understanding of the genes responsible for degradation will enable targeted studies of phenazine degraders in diverse environments.IMPORTANCE Bacteria from phylogenetically diverse groups secrete redox-active metabolites that provide a fitness advantage for their producers. For example, phenazines from Pseudomonas spp. benefit the producers by facilitating anoxic survival and biofilm formation and additionally inhibit competitors by serving as antimicrobials. Phenazine-producing pseudomonads act as biocontrol agents by leveraging these antibiotic properties to inhibit plant pests. Despite this importance, the fate of phenazines in the environment is poorly understood. Here, we characterize an enzyme from Mycobacterium fortuitum that catalyzes the first step of phenazine-1-carboxylic acid degradation. Knowledge of the genetic basis of phenazine degradation will facilitate the identification of environments where this activity influences the microbial community structure. Copyright © 2018 American Society for Microbiology.


September 22, 2019  |  

Isolation and characterization of Bacillus sp. GFP-2, a novel Bacillus strain with antimicrobial activities, from Whitespotted bamboo shark intestine.

The abuse of antibiotics and following rapidly increasing of antibiotic-resistant pathogens is the serious threat to our society. Natural products from microorganism are regarded as the important substitution antimicrobial agents of antibiotics. We isolated a new strain, Bacillus sp. GFP-2, from the Chiloscyllium plagiosum (Whitespotted bamboo shark) intestine, which showed great inhibitory effects on the growth of both Gram-positive and Gram-negative bacteria. Additionally, the growth of salmon was effectively promoted when fed with inactivated strain GFP-2 as the inhibition agent of pathogenic bacteria. The genes encoding antimicrobial peptides like LCI, YFGAP and hGAPDH and gene clusters for secondary metabolites and bacteriocins, such as difficidin, bacillibactin, bacilysin, surfactin, butirosin, macrolactin, bacillaene, fengycin, lanthipeptides and LCI, were predicted in the genome of Bacillus sp. GFP-2, which might be expressed and contribute to the antimicrobial activities of this strain. The gene encoding ß-1,3-1,4-glucanase was successfully cloned from the genome and this protein was detected in the culture supernatant of Bacillus sp. GFP-2 by the antibody produced in rabbit immunized with the recombinant ß-1,3-1,4-glucanase, indicating that this strain could express ß-1,3-1,4-glucanase, which might partially contribute to its antimicrobial activities. This study can enhance a better understanding of the mechanism of antimicrobial activities in genus Bacillus and provide a useful material for the biotechnology study in antimicrobial agent development.


September 22, 2019  |  

Enrichment of the antibiotic resistance gene tet(L) in an alkaline soil fertilized with plant derived organic manure.

Fifteen antibiotic resistance genes (ARGs) and intI1, a gene involved in horizontal gene transfer (HGT) of ARGs, were quantified in three different soil samples from a 22 year old field experiment that had received inorganic fertilizer (NPK), organic manure (OM; a mixture of wheat straw, soybean oil cake and cotton cake), and control fields that had received no fertilizer and manure (CK). Tet(L) was the most abundant ARG in OM, which also contained considerable levels of intI1. Molecular analysis of yearly collected archived soils over the past 22 years showed that tet(L) and intI1 were higher in OM soils than in NPK soils. The relative abundance of tet(L) was essentially constant during these years, while the level of intI1 in OM soils decreased over time. The main genotype of tet(L) was the same in archived and in fresh soil, OM, and irrigation water. Phylogenetic analysis of the 16S rRNA genes of tetracycline-resistant bacteria (TRB) isolates indicated that the Firmucutes carrying tet(L) in OM were similar to those in the OM soil, suggesting that OM transferred TRB into the OM soils where they survived. Almost all of the TRB isolated from OM carried tet(L) and belonged to the Firmicutes. Survival of bacteria from the organic manure that carried tet(L) may be the cause of the increased level of tet(L) in OM soil.


September 22, 2019  |  

Identification of natural product compounds as quorum sensing inhibitors in Pseudomonas fluorescens P07 through virtual screening.

Pseudomonas fluorescens, a Gram-negative psychrotrophic bacteria, is the main microorganism causing spoilage of chilled raw milk and aquatic products. Quorum sensing (QS) widely exists in bacteria to monitor their population densities and regulate numerous physiological activities, such as the secretion of siderophores, swarming motility and biofilm formation. Thus, searching for quorum sensing inhibitors (QSIs) may be another promising way to control the deterioration of food caused by P. fluorescens. Here, we screened a traditional Chinese medicine (TCM) database to discover potential QSIs with lesser toxicity. The gene sequences of LuxI- and LuxR-type proteins of P. fluorescens P07 were obtained through whole-genome sequencing. In addition, the protein structures built by homology modelling were used as targets to screen for QSIs. Twenty-one compounds with a dock score greater than 6 were purchased and tested by biosensor strains (Chromobacterium violaceum CV026 and Agrobacterium tumefaciens A136). The results showed that 10 of the compounds were determined as hits (hit rate: 66.67%). Benzyl alcohol, rhodinyl formate and houttuynine were effective QSIs. The impact of the most active compound (benzyl alcohol) on the phenotypes of P. fluorescens P07, including swimming and swarming motility, production of extracellular enzymes and siderophores, N-acylhomoserine lactone (AHLs) content and biofilm formation were determined. The inhibitory mechanism of benzyl alcohol on the QS system of P. fluorescens P07 is further discussed. This study reveals the feasibility of searching for novel QSIs through virtual screening. Copyright © 2018 Elsevier Ltd. All rights reserved.


September 22, 2019  |  

Complete genome sequence of Cd(II)-resistant Arthrobacter sp. PGP41, a plant growth-promoting bacterium with potential in microbe-assisted phytoremediation.

Microbe-assisted phytoremediation has great potential for practical applications. Plant growth-promoting bacteria (PGPB) with heavy metal (HM) resistance are important for the implementation of PGPB-assisted phytoremediation of HM-contaminated environments. Arthrobacter sp. PGP41 is a Cd(II)-resistant bacterium isolated from the rhizosphere soils of a Cd(II) hyperaccumulator plant, Solanum nigrum. Strain PGP41 can significantly improve plant seedling and root growth under Cd(II) stress conditions. This bacterium exhibited the ability to produce high levels of indole-3-acetic acid (IAA), as well as the ability to fix nitrogen and solubilize phosphate, and it possessed 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Here, we present the complete genome sequence of strain PGP41. The genome consists of a single chromosome with a G+C content of 65.38% and no plasmids. The genome encodes 3898 genes and contains 49 tRNA and 12 rRNA genes. Multiple genes associated with plant growth promotion were identified in the genome. The whole genome sequence of PGP41 provides information useful for further clarifying the molecular mechanisms behind plant growth promotion by PGPB and facilitates its potential use as an inoculum in the bioremediation of HM-contaminated environments.


September 22, 2019  |  

Amycomicin is a potent and specific antibiotic discovered with a targeted interaction screen.

The rapid emergence of antibiotic-resistant pathogenic bacteria has accelerated the search for new antibiotics. Many clinically used antibacterials were discovered through culturing a single microbial species under nutrient-rich conditions, but in the environment, bacteria constantly encounter poor nutrient conditions and interact with neighboring microbial species. In an effort to recapitulate this environment, we generated a nine-strain actinomycete community and used 16S rDNA sequencing to deconvolute the stochastic production of antimicrobial activity that was not observed from any of the axenic cultures. We subsequently simplified the community to just two strains and identified Amycolatopsis sp. AA4 as the producing strain and Streptomyces coelicolor M145 as an inducing strain. Bioassay-guided isolation identified amycomicin (AMY), a highly modified fatty acid containing an epoxide isonitrile warhead as a potent and specific inhibitor of Staphylococcus aureus Amycomicin targets an essential enzyme (FabH) in fatty acid biosynthesis and reduces S. aureus infection in a mouse skin-infection model. The discovery of AMY demonstrates the utility of screening complex communities against specific targets to discover small-molecule antibiotics.


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.