Certified Service Provider Profile: In Seoul, DNA Link offers excellence in SMRT Sequencing
Korean service provider DNA Link has established strong expertise with the PacBio sequencing platform in response to high global demand for the technology.
Korean service provider DNA Link has established strong expertise with the PacBio sequencing platform in response to high global demand for the technology.
Single Molecule, Real-Time (SMRT) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in better sequencing performance across difficult to sequence regions of the genome. To obtain the highest quality, long DNA it is important to start with sample types compatible with HMW DNA extraction methods. This technical note is intended to give general guidance on sample collection, preparation, and storage across a range of commonly encountered sample types used for SMRT Sequencing whole genome projects. It is important to note that all samples and projects are unique and may not be comprehensively addressed in this document.
Single Molecule, Real-Time (SMRT) Sequencing uses the natural process of DNA replication to sequence long fragments of native DNA in order to produce highly accurate long reads, or HiFi reads. As such, starting with high-quality, high molecular weight (HMW) genomic DNA (gDNA) will result in longer libraries and better performance during sequencing. This technical note is intended to give recommendations, tips and tricks for the extraction of DNA, as well as assessing and preserving the quality and size of your DNA sample to be used for HiFi sequencing.
Learn how highly accurate long-read sequencing from the Sequel IIe Systems delivers data you can trust for advanced biological insights across a range of applications.
The SMRTbell Express Template Prep Kit 2.0 provides a streamlined, single-tube reaction strategy to generate SMRTbell libraries from 500 bp to >50 kb insert size targets to support large-insert genomic libraries, multiplexed microbial genomes and amplicon sequencing. With this new formulation, we have increased both the yield and efficiency of SMRTbell library preparation for SMRT Sequencing while further minimizing handling-induced DNA damage to retain the integrity of genomic DNA (gDNA). This product note highlights the key benefits, performance, and resources available for supporting de novo genome sequencing and structural variant detection projects. Our large-insert gDNA protocol has been streamlined to support SMRTbell library generation in only 4 hours, making complete construction in less than a day. This significantly reduces time to results for generating high-quality genome assemblies to fully characterize SNPs and structural variants. Additional key benefits of this template preparation kit and updated protocol include library generation with as little as 2 to 3 µg input gDNA and flexibility to accommodate and adjust input amount in accordance with the extracted gDNA quality.
The Sequel II and IIe Systems are powered by Single Molecule, Real-Time (SMRT) Sequencing, a technology proven to produce highly accurate long reads, known as HiFi reads, for sequencing data you and your customers can trust.
The Agilent 5200, 5300, and 5400 Fragment Analyzer instruments are fast, high-resolution benchtop capillary electrophoresis (CE) platforms that utilize proprietary markers to accurately size fragments ranging from 10 to 50 kb. This platform allows important DNA quality checkpoints to be completed in one hour for de novo large-genome sequencing projects and other PacBio applications leveraging multi-kilobase read lengths. The instrument can be used in place of time-consuming QC steps involving pulsed field gel electrophoresis (PFGE), saving time by avoiding multiple overnight gel runs when preparing large-insert SMRTbell libraries. Alternative DNA-sizing instruments cannot accurately resolve large DNA fragments in this range.
Explore a list of PacBio certified service providers.
Interested to learn about pangenomes? Explore this guide to learn how they provide a more complete picture of the core genes of a given species and how that can provide better biological understanding.
As the foundation for scientific discoveries in genetic diversity, sequencing data must be accurate and complete. With highly accurate long-read sequencing, or HiFi sequencing, there is no longer a compromise between read length and accuracy. HiFi sequencing enables some of the highest quality de novo genome assemblies available today as well as comprehensive variant detection in human samples. PacBio HiFi libraries constructed using our standard library workflows require at least 3 µg of DNA input per 1 Gb of genome length, or ~10 µg for a human sample. For some samples it is not possible to extract this amount of DNA for sequencing. For samples where between 300 ng and 3 ug of DNA is available, the Low DNA Input Workflow enables users to generate high-quality genome assemblies of small-bodied organisms. For samples where even less DNA is available (as low as 5 ng), the amplification-based Ultra-Low DNA Input Workflow is available.
Learn why it is critically important to understand accuracy in DNA sequencing to distinguish important biological information from sequencing errors.
The study of genomics has revolutionized our understanding of science, but the field of transcriptomics grew with the need to explore the functional impacts of genetic variation. While different tissues in an organism may share the same genomic DNA, they can differ greatly in what regions are transcribed into RNA and in their patterns of RNA processing. By reviewing the history of transcriptomics, we can see the advantages of RNA sequencing using a full-length transcript approach become clearer.
Explore how high-quality genomes contribute to critical scientific endeavors.
Our understanding of microbiology has evolved enormously over the last 150 years. Few institutions have witnessed our collective progress more closely than the National Collection of Type Cultures (NCTC). In fact, the collection itself is a record of the many milestones microbiologists have crossed, building on the discoveries of those who came before. To date, 60% of NCTC’s historic collection now has a closed, finished reference genome, thanks to PacBio Single Molecule, Real- Time (SMRT) Sequencing. We are excited to be their partner in crossing this latest milestone on their quest to improve human and animal health by understanding the microscopic world.
Explore how highly accurate long-read sequencing enabled sequencing the large and highly complex California redwood genome.
If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.