Menu
July 7, 2019  |  

Synaptogyrin-2 influences replication of Porcine circovirus 2.

Porcine circovirus 2 (PCV2) is a circular single-stranded DNA virus responsible for a group of diseases collectively known as PCV2 Associated Diseases (PCVAD). Variation in the incidence and severity of PCVAD exists between pigs suggesting a host genetic component involved in pathogenesis. A large-scale genome-wide association study of experimentally infected pigs (n = 974), provided evidence of a host genetic role in PCV2 viremia, immune response and growth during challenge. Host genotype explained 64% of the phenotypic variation for overall viral load, with two major Quantitative Trait Loci (QTL) identified on chromosome 7 (SSC7) near the swine leukocyte antigen complex class II locus and on the proximal end of chromosome 12 (SSC12). The SNP having the strongest association, ALGA0110477 (SSC12), explained 9.3% of the genetic and 6.2% of the phenotypic variance for viral load. Dissection of the SSC12 QTL based on gene annotation, genomic and RNA-sequencing, suggested that a missense mutation in the SYNGR2 (SYNGR2 p.Arg63Cys) gene is potentially responsible for the variation in viremia. This polymorphism, located within a protein domain conserved across mammals, results in an amino acid variant SYNGR2 p.63Cys only observed in swine. PCV2 titer in PK15 cells decreased when the expression of SYNGR2 was silenced by specific-siRNA, indicating a role of SYNGR2 in viral replication. Additionally, a PK15 edited clone generated by CRISPR-Cas9, carrying a partial deletion of the second exon that harbors a key domain and the SYNGR2 p.Arg63Cys, was associated with a lower viral titer compared to wildtype PK15 cells (>24 hpi) and supernatant (>48hpi)(P < 0.05). Identification of a non-conservative substitution in this key domain of SYNGR2 suggests that the SYNGR2 p.Arg63Cys variant may underlie the observed genetic effect on viral load.


July 7, 2019  |  

iMGEins: detecting novel mobile genetic elements inserted in individual genomes.

Recent advances in sequencing technology have allowed us to investigate personal genomes to find structural variations, which have been studied extensively to identify their association with the physiology of diseases such as cancer. In particular, mobile genetic elements (MGEs) are one of the major constituents of the human genomes, and cause genome instability by insertion, mutation, and rearrangement.We have developed a new program, iMGEins, to identify such novel MGEs by using sequencing reads of individual genomes, and to explore the breakpoints with the supporting reads and MGEs detected. iMGEins is the first MGE detection program that integrates three algorithmic components: discordant read-pair mapping, split-read mapping, and insertion sequence assembly. Our evaluation results showed its outstanding performance in detecting novel MGEs from simulated genomes, as well as real personal genomes. In detail, the average recall and precision rates of iMGEins are 96.67 and 100%, respectively, which are the highest among the programs compared. In the testing with real human genomes of the NA12878 sample, iMGEins shows the highest accuracy in detecting MGEs within 20?bp proximity of the breakpoints annotated.In order to study the dynamics of MGEs in individual genomes, iMGEins was developed to accurately detect breakpoints and report inserted MGEs. Compared with other programs, iMGEins has valuable features of identifying novel MGEs and assembling the MGEs inserted.


July 7, 2019  |  

Bridging gaps in transposable element research with single-molecule and single-cell technologies

More than half of the genomic landscape in humans and many other organisms is composed of repetitive DNA, which mostly derives from transposable elements (TEs) and viruses. Recent technological advances permit improved assessment of the repetitive content across genomes and newly developed molecular assays have revealed important roles of TEs and viruses in host genome evolution and organization. To update on our current understanding of TE biology and to promote new interdisciplinary strategies for the TE research community, leading experts gathered for the 2nd Uppsala Transposon Symposium on October 4–5, 2018 in Uppsala, Sweden. Using cutting-edge single-molecule and single-cell approaches, research on TEs and other repeats has entered a new era in biological and biomedical research.


July 7, 2019  |  

De novo genome assembly of the olive fruit fly (Bactrocera oleae) developed through a combination of linked-reads and long-read technologies

Long-read sequencing has greatly contributed to the generation of high quality assemblies, albeit at a high cost. It is also not always clear how to combine sequencing platforms. We sequenced the genome of the olive fruit fly (Bactrocera oleae), the most important pest in the olive fruits agribusiness industry, using Illumina short-reads, mate-pairs, 10x Genomics linked-reads, Pacific Biosciences (PacBio), and Oxford Nanopore Technologies (ONT). The 10x linked-reads assembly gave the most contiguous assembly with an N50 of 2.16 Mb. Scaffolding the linked-reads assembly using long-reads from ONT gave a more contiguous assembly with scaffold N50 of 4.59 Mb. We also present the most extensive transcriptome datasets of the olive fly derived from different tissues and stages of development. Finally, we used the Chromosome Quotient method to identify Y-chromosome scaffolds and show that the long-reads based assembly generates very highly contiguous Y-chromosome assembly.


January 23, 2017  |  

Tutorial: HGAP4 de novo assembly application

This tutorial provides an overview of the Hierarchical Genome Assembly Process (HGAP4) de novo assembly analysis application. HGAP4 generates accurate de novo assemblies using only PacBio data. HGAP4 is suitable…


Talk with an expert

If you have a question, need to check the status of an order, or are interested in purchasing an instrument, we're here to help.